Skip to main content

Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization

  • Protocol
  • First Online:
Hi-C Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2301))

Abstract

Over the last decade, genomic proximity ligation approaches have reshaped our vision of chromosomes 3D organizations, from bacteria nucleoids to larger eukaryotic genomes. The different protocols (3Cseq, Hi-C, TCC, MicroC [XL], Hi-CO, etc.) rely on common steps (chemical fixation digestion, ligation…) to detect pairs of genomic positions in close proximity. The most common way to represent these data is a matrix, or contact map, which allows visualizing the different chromatin structures (compartments, loops, etc.) that can be associated to other signals such as transcription, protein occupancy, etc. as well as, in some instances, to biological functions.

In this chapter we present and discuss the filtering of the events recovered in proximity ligation experiments as well as the application of the balancing normalization procedure on the resulting contact map. We also describe a computational tool for visualizing normalized contact data dubbed Scalogram.

The different processes described here are illustrated and supported by the laboratory custom-made scripts pooled into “hicstuff,” an open-access python package accessible on github (https://github.com/koszullab/hicstuff).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker J (2008) Gene regulation in the third dimension. Science 319:1793–1794

    Article  CAS  Google Scholar 

  2. Lazar-Stefanita L, Scolari VF, Mercy G et al (2017) Cohesins and condensins orchestrate the 4d dynamics of yeast chromosomes during the cell cycle. EMBO J 36:2684

    Article  CAS  Google Scholar 

  3. Schalbetter SA, Fudenberg G, Baxter J et al (2019) Principles of meiotic chromosome assembly revealed in S. Cerevisiae. Nat Commun 10(1):4795

    Article  Google Scholar 

  4. Muller H, Scolari VF, Agier N et al (2018) Characterizing meiotic chromosomes structure and pairing using a designer sequence optimized for hi-c. Mol Syst Biol 14(7):e8293

    Article  Google Scholar 

  5. Garcia-Luis J, Lazar-Stefanita L, Gutierrez-Escribano P et al (2019) Fact mediates cohesin function on chromatin. Nat Struct Mol Biol 26(10):9700–9979

    Article  Google Scholar 

  6. Dauban L, Montagne R, Thierry A et al (2020) Regulation of cohesin-mediated chromosome folding by eco1 and other partners. Mol Cell 77(6):1279–1293

    Article  CAS  Google Scholar 

  7. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identifed by analysis of chromatin interactions. Nature 485(7398):376–380

    Article  CAS  Google Scholar 

  8. Fudenberg G, Imakaev M, Lu C et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15(9):2038–2049

    Article  CAS  Google Scholar 

  9. Le TBK, Imakaev MV, Mirny LA et al (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342(6159):731–734

    Article  CAS  Google Scholar 

  10. Lioy VS, Cournac A, Marbouty M et al (2018) Multiscale structuring of the E. coli chromo-some by nucleoid-associated and condensin proteins. Cell 172(4):771–783

    Article  CAS  Google Scholar 

  11. Marbouty M, Cournac A, Flot JF et al (2014) Metagenomic chromosome conformation capture (meta3c) unveils the diversity of chromosome organization in microorganisms. eLife 3:e03318

    Article  Google Scholar 

  12. Takemata N, Samson RY, Bell SD (2019) Physical and functional compartmentalization of archaeal chromosomes. Cell 179(1):165–179.e18

    Article  CAS  Google Scholar 

  13. Tanizawa H, Kim KD, Iwasaki O et al (2017) Architectural alterations of the fission yeast genome during the cell cycle. Nat Struct Mol Biol 24(11):9650–9976

    Article  Google Scholar 

  14. Hsieh THS, Fudenberg G, Goloborodko A et al (2016) Micro-c xl: assaying chromosome conformation from the nucleosome to the entire genome. Nat Methods 13(12):10090–11011

    Article  Google Scholar 

  15. Jung I, Schmitt A, Diao Y et al (2019) A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat Genet 51(10):14420–11449

    Article  Google Scholar 

  16. Hsieh THS, Weiner A, Lajoie B et al (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-c. Cell 162(1):1080–1119

    Article  Google Scholar 

  17. Ohno M, Ando T, Priest DG et al (2019) Sub-nucleosomal genome structure reveals distinct nucleosome fold-ing motifs. Cell 176(3):520–534.e25

    Article  CAS  Google Scholar 

  18. Cournac A, Marie-Nelly H, Marbouty M et al (2012) Normalization of a chromosomal contact map. BMC Genomics 13:436

    Article  CAS  Google Scholar 

  19. Marie-Nelly H, Marbouty M, Cournac A et al (2014) High-quality genome (re)assembly using chromosomal contact data. Nat Commun 5:5695

    Article  CAS  Google Scholar 

  20. Swygert SG, Kim S, Wu X et al (2019) Condensin-dependent chromatin compaction represses transcription globally during quiescence. Mol Cell 73(3):5330–5546

    Article  Google Scholar 

  21. Liu T, Wang Z (2019) normGAM: an r package to remove systematic biases in genome architecture mapping data. BMC Genomics 20(S12)

    Google Scholar 

  22. Imakaev M, Fudenberg G, McCord RP et al (2012) Iterative correction of hi-c data reveals hallmarks of chromosome organization. Nat Methods 9(10):9990–1003

    Article  Google Scholar 

  23. Knight PA, Ruiz D (2012) A fast algorithm for matrix balancing. IMA J Numer Anal 33(3):1029–1047

    Article  Google Scholar 

  24. Servant N, Varoquaux N, Heard E et al (2018) Effective normalization for copy number variation in hi-c data. BMC Bioinform 19(1):313

    Article  Google Scholar 

  25. Barbieri M, Chotalia M, Fraser J et al (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 109(40):16173–16178

    Article  CAS  Google Scholar 

  26. Serra F, Bau D, Goodstadt M et al (2017) Automatic analysis and 3d-modelling of hi-c data using tadbit reveals structural features of the y chromatin colors. PLoS Comput Biol 13(7):e1005665

    Article  Google Scholar 

  27. Espeli O, Mercier R, Boccard F (2008) DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol 68:14180–11427

    Article  Google Scholar 

  28. Javer A, Long Z, Nugent E et al (2013) Short-time movement of e. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun 4(1):3003

    Article  Google Scholar 

  29. Moreau P, Cournac A, Palumbo GA et al (2018) Tridimensional infiltration of DNA viruses into the host genome shows preferential contact with active chromatin. Nat Commun 9(1):4268

    Article  Google Scholar 

  30. Liu S, Lorenzen ED, Fumagalli M et al (2014) Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157(4):785–794

    Article  CAS  Google Scholar 

  31. Dudchenko O, Batra SS, Omer AD et al (2017) De novo assembly of the aedes aegypti genome using hi-c yields chromosome-length scaffolds. Science 356(6333):92–95

    Article  CAS  Google Scholar 

  32. Mitchell MA, Dervan PB (1982) Interhelical DNA-DNA crosslinking. Bis(monoazidomethidium)octaoxahexacosanediamine: a probe of packaged nucleic acid. J Am Chem Soc 104(15):42650–44266

    Article  Google Scholar 

  33. Cournac A, Marbouty M, Mozziconacci J, et al (2016) Generation and analysis of chromosomal contact maps of yeast species. In: Yeast functional genomics: methods and protocols, p 2270–245

    Google Scholar 

  34. Rowley MJ, Lyu X, Rana V et al (2019) Condensin II counteracts cohesin and RNA polymerase II in the establishment of 3d chromatin organization. Cell Rep 26(11):28900–2903.e3

    Article  Google Scholar 

Download references

Acknowledgments

All members of the Régulation Spatiale des Génomes laboratory are thanked for the daily exchanges and feedbacks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Cournac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matthey-Doret, C., Baudry, L., Mortaza, S., Moreau, P., Koszul, R., Cournac, A. (2022). Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization. In: Bicciato, S., Ferrari, F. (eds) Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1390-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1390-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1389-4

  • Online ISBN: 978-1-0716-1390-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics