Skip to main content

Chemical Derivatization-Aided High Resolution Mass Spectrometry for Shotgun Lipidome Analysis

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

Abstract

Chemical derivatization coupled with nano-electrospray ionization (nESI) and ultra-high resolution accurate mass spectrometry (UHRAMS) is an established approach to overcome isobaric and isomeric mass interference limitations, and improve the analytical performance, of direct-infusion (i.e., “shotgun”) lipidome analysis strategies for “sum composition” level identification and quantification of individual lipid species from within complex mixtures. Here, we describe a protocol for sequential functional group selective derivatization of aminophospholipids and O-alk-1′-enyl (i.e., plasmalogen) lipids, that when integrated into a shotgun lipidomics workflow involving deuterium-labeled internal lipid standard addition, monophasic lipid extraction, and nESI-UHRAMS analysis, enables the routine identification and quantification of >500 individual lipid species at the “sum composition” level, across four lipid categories and from >30 lipid classes and subclasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Donnell VB, Ekroos K, Liebisch G, Wakelam M (2020) Lipidomics: current state of the art in a fast moving field. Wiley Interdiscip Rev Syst Biol Med 12(1):e1466. https://doi.org/10.1002/wsbm.1466

    Article  PubMed  Google Scholar 

  2. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogene 5:e189

    Article  CAS  Google Scholar 

  3. Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A (2019) Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 18:29. https://doi.org/10.1186/s12944-019-0977-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Park JK, Coffey NJ, Limoges A, Le A (2018) The heterogeneity of lipid metabolism in cancer. Adv Exp Med Biol 1063:33–55

    Article  CAS  PubMed  Google Scholar 

  5. Ekroos K, Lavrynenko O, Titz B, Pater C, Hoeng J, Ivanov NV (2020) Lipid-based biomarkers for CVD, COPD, and aging—a translational perspective. Prog Lipid Res 78:101030. https://doi.org/10.1016/j.plipres.2020.101030

    Article  CAS  PubMed  Google Scholar 

  6. Huynh K, Martins RN, Meikle PJ (2017) Lipidomic profiles in diabetes and dementia. J Alzheimers Dis 59:433–444

    Article  CAS  PubMed  Google Scholar 

  7. Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS (2017) Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement 13:810–827

    Article  PubMed  Google Scholar 

  8. Lee TH, Hofferek V, Separovic F, Reid GE, Aguilar MI (2019) The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol 52:85–92

    Article  CAS  PubMed  Google Scholar 

  9. Leung LM, Fondrie WE, Doi Y, Johnson JK, Strickland DK, Ernst RK, Goodlett DR (2017) Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Sci Rep 7:6403

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shulaev V, Chapman KD (2017) Plant lipidomics at the crossroads: from technology to biology driven science. Biochim Biophys Acta Mol Cell Biol Lipids 1862:786–791

    Article  CAS  PubMed  Google Scholar 

  11. Sarabia LD, Boughton BA, Rupasinghe T, van de Meene AML, Callahan DL, Hill CB, Roessner U (2018) High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress. Metabolomics 14:63. https://doi.org/10.1007/s11306-018-1359-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han X (2016) Lipidomics: comprehensive mass spectrometry of lipids. Wiley, Hoboken, NJ

    Book  Google Scholar 

  13. Rustam YH, Reid GE (2018) Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal Chem 90(1):374–397

    Article  CAS  PubMed  Google Scholar 

  14. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  CAS  PubMed  Google Scholar 

  15. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, van Meer G, Wakelam MJO, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJ (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54:1523–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  18. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  Google Scholar 

  19. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ (2015) An efficient single phase method for the extraction of plasma lipids. Meta 5:389–403

    CAS  Google Scholar 

  21. Lydic TA, Busik JV, Reid GE (2014) A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res 55:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang M, Wang C, Han X (2017) Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry—what, how and why? Mass Spectrom Rev 36:693–714

    Article  CAS  PubMed  Google Scholar 

  23. Schuhmann K, Almeida R, Baumert M, Herzog R, Bornstein SR et al (2012) Shotgun lipidomics on a LTQ orbitrap mass spectrometer by successive switching between acquisition polarity modes. J Mass Spectrom 47:96–104

    Article  CAS  PubMed  Google Scholar 

  24. Fhaner CJ, Liu S, Ji H, Simpson RJ, Reid GE (2012) Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem 84:8917–8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryan E, Reid GE (2016) Chemical derivatization and ultrahigh resolution and accurate mass spectrometry strategies for “Shotgun” lipidome analysis. Acc Chem Res 49(9):1596–1604

    Google Scholar 

  26. Wang M, Huang Y, Han X (2014) Accurate mass searching of individual lipid species candidates from high-resolution mass spectra for shotgun lipidomics. Rapid Commun Mass Spectrom 28:2201–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem 61:192–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pham TH, Zaeem M, Fillier TA, Nadeem M, Vidal NP, Manful C, Cheema S, Cheema M, Thomas RH (2019) Targeting modified lipids during routine lipidomics analysis using HILIC and C30 reverse phase liquid chromatography coupled to mass spectrometry. Sci Rep 9:5048

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hu C, Duan Q, Han X (2019) Strategies to improve/eliminate the limitations in shotgun lipidomics. Proteomics 10:e1900070. https://doi.org/10.1002/pmic.201900070

    Article  CAS  Google Scholar 

  30. Bielow C, Mastrobuoni G, Orioli M, Kempa S (2017) On mass ambiguities in high-resolution shotgun lipidomics. Anal Chem 89(5):2986–2994

    Article  CAS  PubMed  Google Scholar 

  31. Fhaner CJ, Liu S, Zhou X, Reid GE (2013) Functional group selective derivatization and gas-phase fragmentation reactions of plasmalogen glycerophospholipids. Mass Spectrom 2:S0015

    Article  Google Scholar 

  32. Nie S, Fhaner CJ, Liu S, Peake D, Kiyonami R, Huang Y, Reid GE (2015) Characterization and multiplexed quantification of derivatized aminophospholipids. Int J Mass Spectrom 391:71–81

    Article  CAS  Google Scholar 

  33. Han X, Yang K, Cheng H, Fikes KN, Gross RW (2005) Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization. J Lipid Res 46(7):1548–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zemski Berry KA, Turner WW, VanNieuwenhze MS, Murphy RC (2009) Stable isotope labeled 4-(dimethylamino)benzoic acid derivatives of glycerophosphoethanolamine lipids. Anal Chem 81:6633–6640

    Article  CAS  PubMed  Google Scholar 

  35. Tokuoka SM, Kita Y, Shimizu T, Oda Y (2019) Isobaric mass tagging and triple quadrupole mass spectrometry to determine lipid biomarker candidates for Alzheimer’s disease. PLoS One 14:e0226073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haimi P, Uphoff A, Hermansson M, Somerharju P (2006) Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78:8324–8331

    Article  CAS  PubMed  Google Scholar 

  37. Husen P, Tarasov K, Katafiasz M, Sokol E, Vogt J, Baumgart J, Nitsch R, Ekroos K, Ejsing CS (2013) Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One 8:e79736. https://doi.org/10.1371/journal.pone.0079736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou XA, Lu YL, Wang WJ, Borhan B, Reid GE (2010) ‘Fixed Charge’ chemical derivatization and data dependant multistage tandem mass spectrometry for mapping protein surface residue accessibility. J Am Soc Mass Spectrom 21:1339–1351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants APP1156778 and APP1142750 from the National Health and Medical Research Council (NHMRC), and research grant DP190102464 from the Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hofferek, V., Su, H., Reid, G.E. (2021). Chemical Derivatization-Aided High Resolution Mass Spectrometry for Shotgun Lipidome Analysis. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics