Skip to main content

Doubled Haploid Production through Microspore Culture

  • Protocol
  • First Online:
Accelerated Breeding of Cereal Crops

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Isolated microspore culture (IMC) for the production of doubled haploid (DH) plants is a method used by plant breeders to rapidly obtain homozygous breeding lines. Breeders cut many years off the time it takes to create commercial lines by recovering plants from chromosome doubling of haploids. Although there are several DH production methods, IMC has great potential and is highly desirable because large numbers of cells can be isolated and cultured with relative ease. Even with this advantage, however, several factors inhibit universal adoption of microspore culture, especially in wheat. Problematic areas are the rapid death of microspores in culture, the failure of microspore to undergo embryogenesis, and the high percentage of albinos that can be seen in resulting DH plants of certain genotypes. This chapter highlights these challenges and reviews research being done toward finding solutions for IMC improvement with a focus on wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Donoughue LS, Bennett MD (1994) Durum wheat haploid production using maize wide-crossing. Theor Appl Genet 89(5):559–566. https://doi.org/10.1007/BF00222448

    Article  CAS  PubMed  Google Scholar 

  2. Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org 104(3):301–309. https://doi.org/10.1007/s11240-010-9800-y

    Article  Google Scholar 

  3. Li H, Devaux P (2005) Isolated microspore culture overperforms anther culture for green plant regeneration in barley (hordeum vulgare l.). Acta Physiol Plant 27(4):611–619. https://doi.org/10.1007/s11738-005-0065-8

    Article  Google Scholar 

  4. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375. https://doi.org/10.1016/j.tplants.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  5. Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (qtls) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96(1):123–131. https://doi.org/10.1007/s001220050718

    Article  CAS  Google Scholar 

  6. Devaux P, Kilian A, Kleinhofs A (1995) Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet 249(6):600–608. https://doi.org/10.1007/BF00418029

    Article  CAS  PubMed  Google Scholar 

  7. Bilichak A, Sastry-Dent L, Sriram S, Simpson M, Samuel P, Webb S, Jiang F, Eudes F (2020) Genome editing in wheat microspores and haploid embryos mediated by delivery of zfn proteins and cell-penetrating peptide complexes. Plant Biotechnol J 18(5):1307–1316. https://doi.org/10.1111/pbi.13296

    Article  CAS  PubMed  Google Scholar 

  8. Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S (2018) Targeted mutagenesis in wheat microspores using crispr/cas9. Sci Rep 8(1):6502. https://doi.org/10.1038/s41598-018-24690-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Gao S-y, Liu H-h, Zhang X-l, Zeng A-s, Wang J-j, Hou X-l, Li Y (2020) Cdna-aflp analysis of differentially expressed genes during microspore embryogenesis in non-heading Chinese cabbage. In Vitro Cell Dev Biol Plant 56(1):18–28. https://doi.org/10.1007/s11627-019-10036-0

    Article  CAS  Google Scholar 

  10. Bian J, Deng P, Zhan H, Wu X, Nishantha MD, Yan Z, Du X, Nie X, Song W (2019) Transcriptional dynamics of grain development in barley (hordeum vulgare l.). Int J Mol Sci 20(4):962

    Article  CAS  Google Scholar 

  11. Belanger S, Marchand S, Jacques P-E, Meyers B, Belzile F (2018) Differential expression profiling of microspores during the early stages of isolated microspore culture using the responsive barley cultivar gobernadora. G3-Genes Genom Genet 8(5):1603–1614. https://doi.org/10.1534/g3.118.200208

    Article  CAS  Google Scholar 

  12. Borg M, Berger F (2015) Chromatin remodelling during male gametophyte development. Plant J 83(1):177–188. https://doi.org/10.1111/tpj.12856

    Article  CAS  PubMed  Google Scholar 

  13. Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F (2020) Targeted reprogramming of h3k27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol. https://doi.org/10.1038/s41556-020-0515-y

  14. Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small rna. Cell 151(1):194–205. https://doi.org/10.1016/j.cell.2012.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. El-Tantawy AA, Solis MT, Risueno MC, Testillano PS (2014) Changes in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley. Cytogenet Genome Res 143(1–3):200–208. https://doi.org/10.1159/000365232

    Article  CAS  PubMed  Google Scholar 

  16. Machczyńska J, Orłowska R, Mańkowski DR, Zimny J, Bednarek PT (2014) DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell Tissue Org 119(2):289–299. https://doi.org/10.1007/s11240-014-0533-1

    Article  CAS  Google Scholar 

  17. Machczyńska J, Zimny J, Bednarek PT (2015) Tissue culture-induced genetic and epigenetic variation in triticale (× triticosecale spp. Wittmack ex a. Camus 1927) regenerants. Plant Mol Biol 89(3):279–292. https://doi.org/10.1007/s11103-015-0368-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandey P, Daghma DS, Houben A, Kumlehn J, Melzer M, Rutten T (2017) Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin a. Plant Reprod 30(2):95–105. https://doi.org/10.1007/s00497-017-0302-5

    Article  CAS  PubMed  Google Scholar 

  19. Solís M-T, El-Tantawy A-A, Cano V, Risueño MC, Testillano PS (2015) 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front Plant Sci 6:472. https://doi.org/10.3389/fpls.2015.00472

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang F-X, Shang G-D, Wu L-Y, Xu Z-G, Zhao X-Y, Wang J-W (2020) Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev Cell. https://doi.org/10.1016/j.devcel.2020.07.003

  21. Jiang F, Ryabova D, Diedhiou J, Hucl P, Randhawa H, Marillia EF, Foroud NA, Eudes F, Kathiria P (2017) Trichostatin a increases embryo and green plant regeneration in wheat. Plant Cell Rep 36(11):1701–1706. https://doi.org/10.1007/s00299-017-2183-3

    Article  CAS  PubMed  Google Scholar 

  22. Sinha RK, Eudes F (2015) Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores. Plant Cell Tissue Org 122(1):227–237. https://doi.org/10.1007/s11240-015-0763-x

    Article  CAS  Google Scholar 

  23. Asif M, Eudes F, Goyal A, Amundsen E, Randhawa H, Spaner D (2013) Organelle antioxidants improve microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant 49(5):489–497. https://doi.org/10.1007/s11627-013-9514-z

    Article  CAS  Google Scholar 

  24. Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120(3):379–385. https://doi.org/10.1023/A:1017564100823

    Article  Google Scholar 

  25. Obert B, Szabó L, Mitykó J, Preťová A, Barnabás B (2005) Morphological events in cultures of mechanically isolated maize microspores. In Vitro Cell Dev Biol - Plant 41(6):775–782. https://doi.org/10.1079/IVP2005701

    Article  Google Scholar 

  26. Seguí-Simarro JM, Rivas-Sendra A, Calabuig-Serna A, Camacho-Fernández C, Corral-Martínez P, Porcel R (2019) Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. J Exp Bot 70(4):1267–1281. https://doi.org/10.1093/jxb/ery458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. da Silva Dias J (2003) Protocol for broccoli microspore culture, in Doubled haploid production in crop plants. Springer, pp 195–204

    Book  Google Scholar 

  28. Rivas-Sendra A, Calabuig-Serna A, Seguí-Simarro JM (2017) Dynamics of calcium during in vitro microspore embryogenesis and in vivo microspore development in brassica napus and solanum melongena. Front Plant Sci 8:1177–1177. https://doi.org/10.3389/fpls.2017.01177

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gu H, Sheng X, Zhao Z, Yu H, Wang J (2014) Initiation and development of microspore embryogenesis and plant regeneration of brassica nigra. In Vitro Cell Dev Biol Plant 50(5):534–540. https://doi.org/10.1007/s11627-014-9612-6

    Article  CAS  Google Scholar 

  30. Li H, Devaux P (2003) High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci J 164(3):379–386. https://doi.org/10.1016/S0168-9452(02)00424-7

    Article  CAS  Google Scholar 

  31. Rodríguez-Serrano M, Bárány I, Prem D, Coronado MJ, Risueño MC, Testillano PS (2012) No, ros, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J Exp Bot 63(5):2007–2024. https://doi.org/10.1093/jxb/err400

    Article  CAS  PubMed  Google Scholar 

  32. Esteves P, Belzile F (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: I-optimization of key physical factors. Plant Cell Rep 33(6):993–1001. https://doi.org/10.1007/s00299-014-1583-x

    Article  CAS  PubMed  Google Scholar 

  33. Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I (2020) Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Sci J 291:110321. https://doi.org/10.1016/j.plantsci.2019.110321

    Article  CAS  Google Scholar 

  34. Corral-Martínez P, Driouich A, Seguí-Simarro JM (2019) Dynamic changes in arabinogalactan-protein, pectin, xyloglucan and xylan composition of the cell wall during microspore embryogenesis in brassica napus. Front Plant Sci 10:332. https://doi.org/10.3389/fpls.2019.00332

    Article  PubMed  PubMed Central  Google Scholar 

  35. Labbani Z, de Buyser J, Picard E (2007) Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in triticum turgidum ssp. Durum cv. ‘Jennah khetifa’. Plant Breed 126(6):565–568. https://doi.org/10.1111/j.1439-0523.2007.01399.x

    Article  CAS  Google Scholar 

  36. Lantos C, Bóna L, Nagy É, Békés F, Pauk J (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (triticum spelta l.) genotypes. Plant Cell Tissue Org 133(3):385–393. https://doi.org/10.1007/s11240-018-1391-z

    Article  CAS  Google Scholar 

  37. Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (triticum aestivum l.) microspore culture. Plant Cell Rep 24(12):691–698. https://doi.org/10.1007/s00299-005-0013-5

    Article  CAS  PubMed  Google Scholar 

  38. Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6× triticale cultivars. Plant Cell Tissue Org 82(3):233–241. https://doi.org/10.1007/s11240-005-0867-9

    Article  CAS  Google Scholar 

  39. Zheng M, Liu W, Weng Y, Polle E, Konzak C (2001) Culture of freshly isolated wheat (triticum aestivum l.) microspores treated with inducer chemicals. Plant Cell Rep 20(8):685–690. https://doi.org/10.1007/s00299-001-0393-0

    Article  CAS  Google Scholar 

  40. Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (triticum aestivum l.) through ovary co-culture. Plant Cell Rep 16(8):520–525. https://doi.org/10.1007/BF01142316

    Article  CAS  Google Scholar 

  41. Patel M, Darvey NL, Marshall DR, Berry JO (2004) Optimization of culture conditions for improved plant regeneration efficiency from wheat microspore culture. Euphytica 140(3):197–204. https://doi.org/10.1007/s10681-004-3036-z

    Article  CAS  Google Scholar 

  42. Chu CC, Hill RD, Brule-Babel L (1990) High frequency of pollen embryoid formation and plant regeneration in triticum aestivum l. on monosaccharide containing media. Plant Sci J 66(2):255–262. https://doi.org/10.1016/0168-9452(90)90211-6

    Article  CAS  Google Scholar 

  43. Kasha K, Simion E, Oro R, Shim Y (2003) Barley isolated microspore culture protocol. In: Doubled haploid production in crop plants. Springer, pp 43–47

    Chapter  Google Scholar 

  44. Genovesi AD, Collins G (1982) In vitro production of haploid plants of corn via anther culture 1. Crop Sci 22(6):1137–1144

    Article  Google Scholar 

  45. Pescitelli S, Johnson C, Petolino J (1990) Isolated microspore culture of maize: effects of isolation technique, reduced temperature, and sucrose level. Plant Cell Rep 8(10):628–631

    Article  CAS  Google Scholar 

  46. Nägeli M, Schmid J, Stamp P, Büter B (1999) Improved formation of regenerable callus in isolated microspore culture of maize: impact of carbohydrates, plating density and time of transfer. Plant Cell Rep 19(2):177–184

    Article  Google Scholar 

  47. Ferrie A, Epp D, Keller W (1995) Evaluation of brassica rapa l. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep 14(9):580–584

    Article  CAS  Google Scholar 

  48. Lichter R (1981) Anther culture of brassica napus in a liquid culture medium. Z Pflanzenphysiol 103(3):229–237

    Article  CAS  Google Scholar 

  49. Sato T, Nishio T, Hirai M (1989) Plant regeneration from isolated microspore cultures of Chinese cabbage (brassica campestris spp. Pekinensis). Plant Cell Rep 8(8):486–488

    Article  CAS  Google Scholar 

  50. Nitsch C, Nitsch J (1967) The induction of flowering in vitro in stem segments of plumbago indica l. Planta 72(4):355–370

    Article  CAS  Google Scholar 

  51. Zheng M, Weng Y, Liu W, Konzak C (2002) The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (triticum aestivum l.). Plant Cell Rep 20(9):802–807

    Article  CAS  Google Scholar 

  52. Li H, Soriano M, Cordewener J, Muiño JM, Riksen T, Fukuoka H, Angenent GC, Boutilier K (2014) The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte. Plant Cell 26(1):195–209

    Article  CAS  Google Scholar 

  53. Yang F, Zhang L, Li J, Huang J, Wen R, Ma L, Zhou D, Li L (2010) Trichostatin a and 5-azacytidine both cause an increase in global histone h4 acetylation and a decrease in global DNA and h3k9 methylation during mitosis in maize. BMC Plant Biol 10(1):178. https://doi.org/10.1186/1471-2229-10-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berenguer E, Bárány I, Solís M-T, Pérez-Pérez Y, Risueño MC, Testillano PS (2017) Inhibition of histone h3k9 methylation by bix-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Front Plant Sci 8:1161. https://doi.org/10.3389/fpls.2017.01161

    Article  PubMed  PubMed Central  Google Scholar 

  55. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220. https://doi.org/10.1038/nrg2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ueda M, Seki M (2020) Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol 182:15

    Article  CAS  Google Scholar 

  57. Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61(1):395–420. https://doi.org/10.1146/annurev.arplant.043008.091939

    Article  CAS  PubMed  Google Scholar 

  58. Zhang L, Zhang Y, Gao Y, Jiang X, Zhang M, Wu H, Liu Z, Feng H (2016) Effects of histone deacetylase inhibitors on microspore embryogenesis and plant regeneration in pakchoi ( brassica rapa ssp. Chinensis l.). Sci Hortic 209:61–66. https://doi.org/10.1016/j.scienta.2016.05.001

    Article  CAS  Google Scholar 

  59. Upadhyay AK, Rotili D, Han JW, Hu R, Chang Y, Labella D, Zhang X, Yoon Y-S, Mai A, Cheng X (2012) An analog of bix-01294 selectively inhibits a family of histone h3 lysine 9 jumonji demethylases. J Mol Biol 416(3):319–327. https://doi.org/10.1016/j.jmb.2011.12.036

    Article  CAS  PubMed  Google Scholar 

  60. Fraga HPF, Vieira LN, Caprestano CA, Steinmacher DA, Micke GA, Spudeit DA, Pescador R, Guerra MP (2012) 5-azacytidine combined with 2,4-d improves somatic embryogenesis of acca sellowiana (o. Berg) burret by means of changes in global DNA methylation levels. Plant Cell Rep 31(12):2165–2176. https://doi.org/10.1007/s00299-012-1327-8

    Article  CAS  PubMed  Google Scholar 

  61. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18(8):1241–1246. https://doi.org/10.1038/cdd.2011.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bárány I, Berenguer E, Solís M-T, Pérez-Pérez Y, Santamaría ME, Crespo JL, Risueño MC, Díaz I, Testillano PS (2018) Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley. J Exp Bot 69(6):1387–1402. https://doi.org/10.1093/jxb/erx455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cistué L, Romagosa I, Batlle F, Echávarri B (2009) Improvements in the production of doubled haploids in durum wheat (triticum turgidum l.) through isolated microspore culture. Plant Cell Rep 28(5):727–735. https://doi.org/10.1007/s00299-009-0690-6

    Article  CAS  PubMed  Google Scholar 

  64. Acosta-García G, Vielle-Calzada J-P (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in arabidopsis. Plant Cell 16(10):2614–2628. https://doi.org/10.1105/tpc.104.024588

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maraschin SF, Vennik M, Lamers GEM, Spaink HP, Wang M (2005) Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos. Planta 220(4):531–540. https://doi.org/10.1007/s00425-004-1371-x

    Article  CAS  Google Scholar 

  66. Maraschin SF, Gaussand G, Pulido A, Olmedilla A, Lamers GEM, Korthout H, Spaink HP, Wang M (2005) Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221(4):459–470. https://doi.org/10.1007/s00425-004-1460-x

    Article  CAS  Google Scholar 

  67. Makowska K, Oleszczuk S (2014) Albinism in barley androgenesis. Plant Cell Rep 33(3):385–392. https://doi.org/10.1007/s00299-013-1543-x

    Article  CAS  PubMed  Google Scholar 

  68. Kumari M, Clarke HJ, Small I, Siddique KHM (2009) Albinism in plants: a major bottleneck in wide hybridization, androgenesis and doubled haploid culture. Crit Rev Plant Sci 28(6):393–409. https://doi.org/10.1080/07352680903133252

    Article  CAS  Google Scholar 

  69. Larsen ET, Tuvesson IKD, Andersen SB (1991) Nuclear genes affecting percentage of green plants in barley (hordeum vulgare l.) anther culture. Theor Appl Genet 82(4):417–420. https://doi.org/10.1007/BF00588593

    Article  CAS  PubMed  Google Scholar 

  70. Krzewska M, Czyczyło-Mysza I, Dubas E, Gołębiowska-Pikania G, Żur I (2015) Identification of qtls associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (×triticosecale wittm.) anther culture. Euphytica 206(1):263–278. https://doi.org/10.1007/s10681-015-1509-x

    Article  Google Scholar 

  71. Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (triticum aestivum l.) anther culture. Euphytica 119(3):377. https://doi.org/10.1023/A:1017554129904

    Article  CAS  Google Scholar 

  72. Muñoz-Amatriaín M, Castillo AM, Chen XW, Cistué L, Vallés MP (2008) Identification and validation of qtls for green plant percentage in barley (hordeum vulgare l.) anther culture. Mol Breed 22(1):119–129. https://doi.org/10.1007/s11032-008-9161-y

    Article  CAS  Google Scholar 

  73. Caredda S, Devaux P, Sangwan RS, Proult I, Clément C (2004) Plastid ultrastructure and DNA related to albinism in androgenetic embryos of various barley (hordeum vulgare l.) cultivars. Plant Cell Tissue Org 76(1):35–43. https://doi.org/10.1023/A:1025812621775

    Article  CAS  Google Scholar 

  74. Munoz-Amatriain M, Svensson JT, Castillo AM, Close TJ, Valles MP (2009) Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genomics 9(3):311–323. https://doi.org/10.1007/s10142-009-0113-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caredda S, Doncoeur C, Devaux P, Sangwan RS, Clément C (2000) Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (hordeum vulgare l.). Sex Plant Reprod 13(2):95–104. https://doi.org/10.1007/s004970000043

    Article  CAS  Google Scholar 

  76. Oleszczuk S, Sowa S, Zimny J (2006) Androgenic response to preculture stress in microspore cultures of barley. Protoplasma 228(1):95–100. https://doi.org/10.1007/s00709-006-0179-x

    Article  CAS  PubMed  Google Scholar 

  77. Jacquard C, Nolin F, Hécart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clément C (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28(9):1329–1339. https://doi.org/10.1007/s00299-009-0733-z

    Article  CAS  PubMed  Google Scholar 

  78. Liu W, Zheng M, Konzak C (2002) Improving green plant production via isolated microspore culture in bread wheat (triticum aestivum l.). Plant Cell Rep 20(9):821–824. https://doi.org/10.1007/s00299-001-0408-x

    Article  CAS  Google Scholar 

  79. Esteves P, Clermont I, Marchand S, Belzile F (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: Ii-exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33(6):871–879. https://doi.org/10.1007/s00299-014-1563-1

    Article  CAS  PubMed  Google Scholar 

  80. Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Gołębiowska G, Wędzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x triticosecale wittm.). Plant Cell Rep 28(8):1279–1287. https://doi.org/10.1007/s00299-009-0730-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alberta Funding Consortium grant (2018F142R) entitled “A Comparative Genomics Approach to Improve Doubled Haploid Breeding for Common and Durum Wheat.” Generous contributors to these funds were the Alberta Agriculture and Forestry, Alberta Wheat Commission, and Saskatchewan Wheat Development Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Laurie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jensen, T., Bodell, K., Jiang, F., Laurie, J.D. (2022). Doubled Haploid Production through Microspore Culture. In: Bilichak, A., Laurie, J.D. (eds) Accelerated Breeding of Cereal Crops. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1526-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1526-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1525-6

  • Online ISBN: 978-1-0716-1526-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics