Skip to main content

PHOTACs Enable Optical Control of Protein Degradation

  • Protocol
  • First Online:
Targeted Protein Degradation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2365))

Abstract

Proteolysis Targeting Chimeras (PROTACs) are a promising technology to degrade specific target proteins. As bifunctional small molecules, PROTACs induce the ternary complex formation between an E3 ligase and a protein of interest (POI), leading to polyubiquitylation and subsequent proteasomal degradation of the protein in a catalytic fashion. We have developed a strategy to control PROTACs with the spatiotemporal precision of light, which led to light-activated versions, termed PHOTACs (PHOtochemically TArgeted Chimeras). By incorporating an azobenzene photoswitch into the PROTAC, we can reversibly control degradation of the POI, as demonstrated for BRD2-4 and FKBP12. Here, we describe our modular approach and the application of PHOTACs for the optical control of protein levels in detail. PHOTACs hold promise as both research tools and precision pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burslem GM, Crews CM (2017) Small-molecule modulation of protein homeostasis. Chem Rev 117:11269–11301. https://doi.org/10.1021/acs.chemrev.7b00077

    Article  CAS  PubMed  Google Scholar 

  2. Lai AC, Crews CM (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov 16:101–114. https://doi.org/10.1038/nrd.2016.211

    Article  CAS  PubMed  Google Scholar 

  3. Skaar JR, Pagan JK, Pagano M (2014) SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov 13:889–903. https://doi.org/10.1038/nrd4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y, Rao Y (2019) PROTACs: great opportunities for academia and industry. Sig Transduct Target Ther 4:1–33. https://doi.org/10.1038/s41392-019-0101-6

    Article  Google Scholar 

  5. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. PNAS 98:8554–8559. https://doi.org/10.1073/pnas.141230798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, Deshaies RJ (2003) Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics 2:1350–1358. https://doi.org/10.1074/mcp.T300009-MCP200

    Article  CAS  PubMed  Google Scholar 

  7. Schneekloth John S, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM (2004) Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 126:3748–3754. https://doi.org/10.1021/ja039025z

    Article  CAS  PubMed  Google Scholar 

  8. Bondeson DP, Mares A, Smith IED, Ko E, Campos S, Miah AH, Mulholland KE, Routly N, Buckley DL, Gustafson JL, Zinn N, Grandi P, Shimamura S, Bergamini G, Faelth-Savitski M, Bantscheff M, Cox C, Gordon DA, Willard RR, Flanagan JJ, Casillas LN, Votta BJ, den Besten W, Famm K, Kruidenier L, Carter PS, Harling JD, Churcher I, Crews CM (2015) Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 11:611–617. https://doi.org/10.1038/nchembio.1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zengerle M, Chan K-H, Ciulli A (2015) Selective small molecule induced degradation of the BET Bromodomain protein BRD4. ACS Chem Biol 10:1770–1777. https://doi.org/10.1021/acschembio.5b00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, Miah AH, Harling JD, Crews CM (2015) HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol 10:1831–1837. https://doi.org/10.1021/acschembio.5b00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–1381. https://doi.org/10.1126/science.aab1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler JD, Crew AP, Coleman K, Crews CM (2015) Hijacking the E3 ubiquitin ligase Cereblon to efficiently target BRD4. Chem Biol 22:755–763. https://doi.org/10.1016/j.chembiol.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RSP (2002) Growth and early Postimplantation defects in mice deficient for the Bromodomain-containing protein Brd4. Mol Cell Biol 22:3794–3802. https://doi.org/10.1128/MCB.22.11.3794-3802.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ (2009) Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn 238:908–917. https://doi.org/10.1002/dvdy.21911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gyuris A, Donovan DJ, Seymour KA, Lovasco LA, Smilowitz NR, Halperin ALP, Klysik JE, Freiman RN (2009) The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim Biophys Acta 1789:413–421. https://doi.org/10.1016/j.bbagrm.2009.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansen MJ, Velema WA, Lerch MM, Szymanski W, Feringa BL (2015) Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chem Soc Rev 44:3358–3377. https://doi.org/10.1039/C5CS00118H

    Article  CAS  PubMed  Google Scholar 

  17. Silva JM, Silva E, Reis RL (2019) Light-triggered release of photocaged therapeutics - where are we now? J Control Release 298:154–176. https://doi.org/10.1016/j.jconrel.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  18. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of Optogenetics. Annu Rev Neurosci 34:389–412. https://doi.org/10.1146/annurev-neuro-061010-113817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Repina NA, Rosenbloom A, Mukherjee A, Schaffer DV, Kane RS (2017) At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Ann Rev Chem Biomol Eng 8:13–39. https://doi.org/10.1146/annurev-chembioeng-060816-101254

    Article  Google Scholar 

  20. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422–4437. https://doi.org/10.1039/C1CS15023E

    Article  CAS  PubMed  Google Scholar 

  21. Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL (2016) Emerging targets in photopharmacology. Angew Chem Int Ed 55:10978–10999. https://doi.org/10.1002/anie.201601931

    Article  CAS  Google Scholar 

  22. Hüll K, Morstein J, Trauner D (2018) In Vivo Photopharmacology. Chem Rev 118:10710–10747. https://doi.org/10.1021/acs.chemrev.8b00037

    Article  CAS  PubMed  Google Scholar 

  23. Reynders M, Matsuura BS, Bérouti M, Simoneschi D, Marzio A, Pagano M, Trauner D (2020) PHOTACs enable optical control of protein degradation. Sci Adv 6:eaay5064. https://doi.org/10.1126/sciadv.aay5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Naro Y, Darrah K, Deiters A (2019) Optical control of small molecule-induced protein degradation. J Am Chem Soc 142(5):2193–2197. https://doi.org/10.26434/chemrxiv.8216714.v1

    Article  Google Scholar 

  25. Xue G, Wang K, Zhou D, Zhong H, Pan Z (2019) Light-induced protein degradation with Photocaged PROTACs. J Am Chem Soc 141(46):18370–18374. https://doi.org/10.1021/jacs.9b06422

    Article  CAS  PubMed  Google Scholar 

  26. Renicke C, Schuster D, Usherenko S, Essen L-O, Taxis C (2013) A LOV2 domain-based Optogenetic tool to control protein degradation and cellular function. Chem Biol 20:619–626. https://doi.org/10.1016/j.chembiol.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Bonger KM, Rakhit R, Payumo AY, Chen JK, Wandless TJ (2014) General method for regulating protein stability with light. ACS Chem Biol 9:111–115. https://doi.org/10.1021/cb400755b

    Article  CAS  PubMed  Google Scholar 

  28. Usherenko S, Stibbe H, Muscó M, Essen L-O, Kostina EA, Taxis C (2014) Photo-sensitive degron variants for tuning protein stability by light. BMC Syst Biol 8. https://doi.org/10.1186/s12918-014-0128-9

  29. Hermann A, Liewald JF, Gottschalk A (2015) A photosensitive degron enables acute light-induced protein degradation in the nervous system. Curr Biol 25:R749–R750. https://doi.org/10.1016/j.cub.2015.07.040

    Article  CAS  PubMed  Google Scholar 

  30. Bléger D, Schwarz J, Brouwer AM, Hecht S (2012) O-Fluoroazobenzenes as readily synthesized Photoswitches offering nearly quantitative two-way isomerization with visible light. J Am Chem Soc 134:20597–20600. https://doi.org/10.1021/ja310323y

    Article  CAS  PubMed  Google Scholar 

  31. Dong M, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA (2015) Red-shifting Azobenzene Photoswitches for in vivo use. Acc Chem Res 48:2662–2670. https://doi.org/10.1021/acs.accounts.5b00270

    Article  CAS  PubMed  Google Scholar 

  32. Hansen MJ, Lerch MM, Szymanski W, Feringa BL (2016) Direct and versatile synthesis of red-shifted Azobenzenes. Angew Chem Int Ed 55:13514–13518. https://doi.org/10.1002/anie.201607529

    Article  CAS  Google Scholar 

  33. Dong M, Babalhavaeji A, Collins CV, Jarrah K, Sadovski O, Dai Q, Woolley GA (2017) Near-infrared Photoswitching of Azobenzenes under physiological conditions. J Am Chem Soc 139:13483–13486. https://doi.org/10.1021/jacs.7b06471

    Article  CAS  PubMed  Google Scholar 

  34. Pfaff P, Samarasinghe KTG, Crews CM, Carreira EM (2019) Reversible spatiotemporal control of induced protein degradation by Bistable PhotoPROTACs. ACS Cent Sci 5(10):1682–1690. https://doi.org/10.1021/acscentsci.9b00713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borowiak M, Nahaboo W, Reynders M, Nekolla K, Jalinot P, Hasserodt J, Rehberg M, Delattre M, Zahler S, Vollmar A, Trauner D, Thorn-Seshold O (2015) Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162:403–411. https://doi.org/10.1016/j.cell.2015.06.049

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Trauner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reynders, M., Trauner, D. (2021). PHOTACs Enable Optical Control of Protein Degradation . In: Cacace, A.M., Hickey, C.M., Békés, M. (eds) Targeted Protein Degradation. Methods in Molecular Biology, vol 2365. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1665-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1665-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1664-2

  • Online ISBN: 978-1-0716-1665-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics