Skip to main content

Use of Reduced Gravity Simulators for Plant Biological Studies

  • Protocol
  • First Online:
Plant Gravitropism

Abstract

Simulated microgravity and partial gravity research on Earth is a necessary complement to space research in real microgravity due to limitations of access to spaceflight. However, the use of ground-based facilities for reduced gravity simulation is far from simple. Microgravity simulation usually results in the need to consider secondary effects that appear in the generation of altered gravity. These secondary effects may interfere with gravity alteration in the changes observed in the biological processes under study. In addition to microgravity simulation, ground-based facilities are also capable of generating hypergravity or fractional gravity conditions whose effects on biological systems are worth being tested and compared with the results of microgravity exposure. Multiple technologies (2D clinorotation, random positioning machines, magnetic levitators, or centrifuges) and experimental hardware (different containers and substrates for seedlings or cell cultures) are available for these studies. Experimental requirements should be collectively and carefully considered in defining the optimal experimental design, taking into account that some environmental parameters, or life-support conditions, could be difficult to be provided in certain facilities. Using simulation facilities will allow us to anticipate, modify, or redefine the findings provided by the scarce available spaceflight opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Space Acency E (2014) Sounding rockets. ESA User guide to low gravity platforms, Chapter 6: Sounding rockets. Noordwijk, Netherlands

    Google Scholar 

  2. Pletser V, Kumei Y (2015) Parabolic Flights. In: Beysens DA, van Loon JJ (eds) Generation and applications of extra-terrestrial environments on earth. Rivers Publishers, Aalborg, Denmark, pp 61–73

    Google Scholar 

  3. von Kampen P, Kaczmarczik U, Rath HJ (2006) The new Drop Tower catapult system. Acta Astronaut 59(1–5):278–283. https://doi.org/10.1016/j.actaastro.2006.02.041

    Article  Google Scholar 

  4. Chang Y-W (2015) The first decade of commercial space tourism. Acta Astronaut 108:79–91

    Article  Google Scholar 

  5. Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, Md G, Hauslage J, Hilbig R, Hill RJA, Lebert M, Medina FJ, Vagt N, Ullrich O, Loon JJWA, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity, including terminology and organism-specific recommendations for their use. Astrobiology 13(1):1–17. https://doi.org/10.1089/ast.2012.0876

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, van Loon J (2019) Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front Plant Sci 10:1577. https://doi.org/10.3389/fpls.2019.01577

    Article  PubMed  PubMed Central  Google Scholar 

  7. Massa GD, Wheeler RM, Morrow RC, Levine HG Growth chambers on the international space station for large plants. In: 8th International Symposium on Light in Horticulture, East Lansing, Michigan. KSC-E-DAA-TN29529, 2016

    Google Scholar 

  8. Zabel P, Bamsey M, Schubert D, Tajmar M (2016) Review and analysis of over 40 years of space plant growth systems. Life Sci Space Res 10:1–16. https://doi.org/10.1016/j.lssr.2016.06.004

    Article  CAS  Google Scholar 

  9. Vandenbrink JP, Herranz R, Poehlman WL, Alex Feltus F, Villacampa A, Ciska M, Javier Medina F, Kiss JZ (2019) RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. Am J Bot 106(11):1466–1476. https://doi.org/10.1002/ajb2.1384

    Article  CAS  PubMed  Google Scholar 

  10. Herranz R, Vandenbrink JP, Villacampa A, Manzano A, Poehlman WL, Feltus FA, Kiss JZ, Medina FJ (2019) RNAseq Analysis of the response of Arabidopsis thaliana to fractional gravity under blue-light stimulation during spaceflight. Front Plant Sci 10:1529. https://doi.org/10.3389/fpls.2019.01529

    Article  PubMed  PubMed Central  Google Scholar 

  11. Valbuena MA, Manzano A, Vandenbrink JP, Pereda-Loth V, Carnero-Diaz E, Edelmann RE, Kiss JZ, Herranz R, Javier Medina F (2018) The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. Planta 248(3):691–704. https://doi.org/10.1007/s00425-018-2930-x

    Article  CAS  PubMed  Google Scholar 

  12. Vandenbrink JP, Herranz R, Medina FJ, Edelmann RE, Kiss JZ (2016) A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. Planta 244(6):1201–1215. https://doi.org/10.1007/s00425-016-2581-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bizet F, Pereda-Loth V, Chauvet H, Gerard J, Eche B, Girousse C, Courtade M, Perbal G, Legue V (2018) Both gravistimulation onset and removal trigger an increase of cytoplasmic free calcium in statocytes of roots grown in microgravity. Sci Rep 8(1):11442. https://doi.org/10.1038/s41598-018-29788-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karahara I, Suto T, Yamaguchi T, Yashiro U, Tamaoki D, Okamoto E, Yano S, Tanigaki F, Shimazu T, Kasahara H, Kasahara H, Yamada M, Hoson T, Soga K, Kamisaka S (2020) Vegetative and reproductive growth of Arabidopsis under microgravity conditions in space. J Plant Res. https://doi.org/10.1007/s10265-020-01200-4

  15. Kiss JZ, Millar KD, Edelmann RE (2012) Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 236(2):635–645. https://doi.org/10.1007/s00425-012-1633-y

    Article  CAS  PubMed  Google Scholar 

  16. Sychev V, Levinskikh M, Gostimsky S, Bingham G, Podolsky I (2007) Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronaut 60(4):426–432. https://doi.org/10.1016/j.actaastro.2006.09.009

    Article  Google Scholar 

  17. Morrow R, Richter R, Tellez G, Monje O, Wheeler R, Massa G, Dufour N, Onate B A New plant habitat facility for the ISS. In: 2016, 46th International Conference on Environmental Systems

    Google Scholar 

  18. Deep Space Gateway and Transport: Concepts for Mars, Moon Exploration Unveiled. (2019). http://www.sci-news.com/space/deep-space-gateway-transport-mars-moon-exploration-04756.html. Accessed March 2020

  19. Manzano A, Herranz R, den Toom LA, te Slaa S, Borst G, Visser M, Medina FJ, van Loon JJWA (2018) Novel, moon and mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. NPJ Microgravity 4. https://doi.org/10.1038/s41526-018-0041-4

  20. Loon JJWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39:5

    Google Scholar 

  21. Beaugnon E, Tournier R (1991) Levitation of organic materials. Nature 349:470

    Article  Google Scholar 

  22. Valles JM Jr, Lin K, Denegre JM, Mowry KL (1997) Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation. Biophys J 73(2):1130–1133. https://doi.org/10.1016/S0006-3495(97)78145-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kittang AI, Iversen TH, Fossum KR, Mazars C, Carnero-Diaz E, Boucheron-Dubuisson E, Le Disquet I, Legue V, Herranz R, Pereda-Loth V, Medina FJ (2014) Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Plant Biol (Stuttg) 16(3):528–538. https://doi.org/10.1111/plb.12132

    Article  Google Scholar 

  24. Baranova EN, Levinskikh MA, Gulevich AA (2019) Wheat space odyssey:“From Seed to Seed”. Kernel morphology. Life 9(4):81

    Article  CAS  Google Scholar 

  25. Wang S, Wang K, Zhou Y, Yan B, Li X, Zhang Y, Wu W, Wang A (2019) Development of the varying gravity rack (VGR) for the Chinese space station. Microgravity Sci Technol 31(1):95–107

    Article  CAS  Google Scholar 

  26. Wolff SA, Palma CF, Marcelis L, Kittang Jost AI, van Delden SH (2018) Testing new concepts for crop cultivation in space: effects of rooting volume and nitrogen availability. Life 8(4). https://doi.org/10.3390/life8040045

  27. ESA GBF Web Page. (2020). http://www.esa.int/Our_Activities/Human_Spaceflight/Human_Spaceflight_Research/Ground_Based_Facilities. Accessed March 2020

  28. Villacampa A, Sora L, Medina FJ, Ciska M Optimal clinorotation settings for microgravity simulation in A. thaliana seedlings. In: 69th International Astronautical Congress, Bremen (Germany), 2018. Curran Associates Inc., Red Hook NY, USA for International Astronautical Federation, pp 604–614

    Google Scholar 

  29. Galland P, Finger H, Wallacher Y (2004) Gravitropism in Phycomyces: threshold determination on a clinostat centrifuge. J Plant Physiol 161(6):733–739. https://doi.org/10.1078/0176-1617-01082

    Article  CAS  PubMed  Google Scholar 

  30. Dedolph R, Gordon S, Oemick D (1966) Geotropism in simulated low-gravity environments. Am J Bot S53(6 Part 1):530–533

    Article  Google Scholar 

  31. Borst AG, van Loon JJWA (2009) Technology and developments for the random positioning machine, RPM. Microgravity Sci Technol 21(4):287–292. https://doi.org/10.1007/s12217-008-9043-2

    Article  Google Scholar 

  32. van Loon JJWA, Tanck E, van Nieuwenhoven FA, Snoeckx LHEH, de Jong HAA, Wubbels RJ (2005) A brief overview of animal hypergravity studies. J Gravit Phys 12(1):5–10

    Google Scholar 

  33. van Loon JJ, Folgering EH, Bouten CV, Veldhuijzen JP, Smit TH (2003) Inertial shear forces and the use of centrifuges in gravity research. What is the proper control? J Biomech Eng 125(3):342–346

    Article  Google Scholar 

  34. van Loon JJ, Krausse J, Cunha H, Goncalves J, Almeida H, Schiller P The large diameter centrifuge, LDC, for life and physical sciences and technology. In: Life in Space for Life on Earth, Anger, France, 2008. vol SP-668. ESA/ISGP,

    Google Scholar 

  35. van Loon JJWA (2016) Centrifuges for microgravity simulation. The reduced gravity paradigm. Front Astron Space Sci 3:21. https://doi.org/10.3389/fspas.2016.00021

    Article  Google Scholar 

  36. Mazars C, Briere C, Grat S, Pichereaux C, Rossignol M, Pereda-Loth V, Eche B, Boucheron-Dubuisson E, Le Disquet I, Medina FJ, Graziana A, Carnero-Diaz E (2014) Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. PLoS One 9(3):e91814. https://doi.org/10.1371/journal.pone.0091814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manzano AI, Herranz R, Van Loon J, Medina FJ (2012) A hypergravity environment induced by centrifugation alters plant cell proliferation and growth in an opposite way to microgravity. Micrograv Sci Technol 24(6):373–381. https://doi.org/10.1007/s12217-012-9301-1

    Article  Google Scholar 

  38. Manzano AI, Larkin OJ, Dijkstra CE, Anthony P, Davey MR, Eaves L, Hill RJ, Herranz R, Medina FJ (2013) Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC Plant Biol 13(1):124. https://doi.org/10.1186/1471-2229-13-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manzano AI, van Loon JJWA, Christianen P, Gonzalez-Rubio JM, Medina FJ, Herranz R (2012) Gravitational and magnetic field variations synergize to reveal subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 13:105. https://doi.org/10.1186/1471-2164-13-105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herranz R, Manzano AI, Loon JJWA, Christianen PCM, Medina FJ (2013) Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 13(3):217–224. https://doi.org/10.1089/ast.2012.0883

    Article  CAS  PubMed  Google Scholar 

  41. Martzivanou M, Hampp R (2003) Hyper-gravity effects on the Arabidopsis transcriptome. Physiol Plant 118(2):221–231

    Article  CAS  Google Scholar 

  42. Martzivanou M, Babbick M, Cogoli-Greuter M, Hampp R (2006) Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229(2–4):155–162. https://doi.org/10.1007/s00709-006-0203-1

    Article  CAS  PubMed  Google Scholar 

  43. Barjaktarovic Z, Schutz W, Madlung J, Fladerer C, Nordheim A, Hampp R (2009) Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J Exp Bot 60(3):779–789. https://doi.org/10.1093/jxb/ern324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barjaktarovic Z, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot 58(15–16):4357–4363. https://doi.org/10.1093/jxb/erm302

    Article  CAS  PubMed  Google Scholar 

  45. Menges M, Murray JA (2006) Synchronization, transformation, and cryopreservation of suspension-cultured cells. Methods Mol Biol 323:45–61. https://doi.org/10.1385/1-59745-003-0:45

    Article  PubMed  Google Scholar 

  46. Cogoli A (1996) Biology under microgravity conditions in Spacelab International Microgravity Laboratory 2 (IML-2). Preface J Biotechnol 47(2–3):67–70

    Article  CAS  Google Scholar 

  47. Cogoli A, Cogoli-Greuter M (1997) Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6:33–79

    Article  CAS  Google Scholar 

  48. Kamal KY, Hemmersbach R, Medina FJ, Herranz R (2015) Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. Life Sci Space Res 5:47–52. https://doi.org/10.1016/j.lssr.2015.04.004

    Article  Google Scholar 

  49. Kamal KY, Herranz R, van Loon JJ, Christianen PC, Medina FJ (2015) Evaluation of simulated microgravity environments induced by diamagnetic levitation of plant cell suspension cultures. Microgravity Sci Technol 28:309–317. https://doi.org/10.1007/s12217-015-9472-7

    Article  Google Scholar 

  50. Kamal KY, van Loon JJWA, Medina FJ, Herranz R (2017) Embedding Arabidopsis plant cell suspensions in low-melting agarose facilitates altered gravity studies. Micrograv Sci Technol 29:115–119. https://doi.org/10.1007/s12217-016-9531-8

    Article  CAS  Google Scholar 

  51. Kamal KY, Herranz R, van Loon JJWA, Medina FJ (2019) Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. Plant Cell Environ 42(2):480–494. https://doi.org/10.1111/pce.13422

    Article  CAS  PubMed  Google Scholar 

  52. Vandenbrink JP, Kiss JZ (2019) Preparation of a spaceflight experiment to study tropisms in arabidopsis seedlings on the International Space Station. Methods Mol Biol 1924:207–214. https://doi.org/10.1007/978-1-4939-9015-3_17

    Article  CAS  PubMed  Google Scholar 

  53. Kojima A, GarcíaYárnoz D, Pippo SD (2018) Access to space: a new approach by the united nations office for outer space affairs. Acta Astronaut 152:201–207

    Article  Google Scholar 

  54. Manzano A, Pereda-Loth V, de Bures A, Sáez-Vásquez J, Herranz R, Medina FJ (2020) Light signals provide a mechanism of counteracting alterations caused by simulated microgravity in proliferating plant cells. Am J Bot. Under review

    Google Scholar 

Download references

Acknowledgments

Most of the results and comments included in this book chapter have been the consequence of the authors’ participation in several different “CORA-ESA Access to GBF” Projects of the European Space Agency, allowing the utilization of European facilities for altered gravity simulation, in close collaboration with the respective GBF managers. One of the co-authors of this paper (JvL) is the manager of the facilities hosted at DESC at ESA-ESTEC (Noordwijk, NL). Other facilities used are managed, respectively, by Dr. Hemmersbach (DLR), Dr. Pereda-Loth (Toulouse University), Dr. Hill (Nottingham University), and Dr. Christianen (Nijmegen University). We want to acknowledge Julio Martin Santos (3DOHMS) support in dedicated hardware design (3D printing and electronic components) to be used in our lab clinostats (obtained by UNZIP project grants from UNOOSA). Work performed in the authors’ laboratory was financially supported by the Spanish Plan Estatal de Investigación Científica y Desarrollo Tecnológico, Grants #ESP2015-64323-R and #RTI2018-099309-B-I00 (co-funded by EU-ERDF) to F.J.M. and a grant from European Space Agency contract# 4000107455/12/NL/PA awarded to J.J.W.A.v.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raúl Herranz or F. Javier Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Herranz, R. et al. (2022). Use of Reduced Gravity Simulators for Plant Biological Studies. In: Blancaflor, E.B. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 2368. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1677-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1677-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1676-5

  • Online ISBN: 978-1-0716-1677-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics