Skip to main content

Biomarkers in Parkinson’s Disease

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, with a documented significant increase in its prevalence in the past three decades. Both environmental and genetic factors contribute to the pathophysiology of this disorder. The diagnosis relies mainly on clinical findings, and currently, there is no reliable and trustworthy method of early identification of PD except for genetic testing limited to rare cases of monogenic forms of the disease. Current scientific research is focused on the identification of new diagnostic criteria and new disease biomarkers, allowing correct and timely diagnosis. Various types of potential PD biomarkers have been tested, including clinical, imaging, pathological, biochemical, and genetic, but none of them can be considered excellent or even satisfactory. However, several recent developments raise hope that early diagnosis of PD will be possible in the near future. The finding of reliable PD biomarkers may happen due to the successes in the field of neuroimaging, including positron emission tomography (PET), single-photon emission CT (SPECT), novel MRI techniques, as well as a result of the progress of new biochemical methods. Examples of these methods include aggregated α-synuclein measurements by real-time quaking-induced conversion (RT-QuIC), protein misfolding cyclic amplification (PMCA), and development of epigenetic-based biomarkers. Besides, a combination of biomarkers looks very promising to maximize their utility and ensure an accurate diagnosis of premotor or early-stage PD. Our goal here is to provide the reader with new developments in biomarkers suitable for early PD identification and to highlight the advantages and limitations of an existing individual biomarker and their combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  2. Espay AJ, Lang AE (2018) Parkinson diseases in the 2020s and beyond: replacing clinico-pathologic convergence with systems biology divergence. J Parkinsons Dis 8(s1):S59–S64. https://doi.org/10.3233/JPD-181465

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan JM, Wong ES, Lim KL (2009) Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal 11(9):2119–2134. https://doi.org/10.1089/ARS.2009.2490

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  5. Braak H, Rüb U, Gai WP et al (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110(5):517–536. https://doi.org/10.1007/s00702-002-0808-2

    Article  CAS  PubMed  Google Scholar 

  6. GBD 2016 Parkinson’s disease Collaborators (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study. Lancet Neurol 17(11):939–953

    Article  Google Scholar 

  7. Koga S, Aoki N, Uitti RJ et al (2015) When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology 85(5):404–412. https://doi.org/10.1212/WNL.0000000000001807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chahine LM, Stern MB, Chen-Plotkin A (2014) Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S99–S103. https://doi.org/10.1016/S1353-8020(13)70025-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chahine LM, Stern MB (2017) Parkinson’s disease biomarkers: where are we and where do we go next? Mov Disord Clin Pract 4(6):796–805. https://doi.org/10.1002/mdc3.12545

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen-Plotkin AS, Zetterberg H (2018) Updating our definitions of Parkinson’s disease for a molecular age. J Parkinsons Dis 8(s1):S53–S57. https://doi.org/10.3233/JPD-181487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delenclos M, Jones DR, PJ ML, Uitti RJ (2016) Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord 22(Suppl 1):S106–S110. https://doi.org/10.1016/j.parkreldis.2015.09.048

    Article  PubMed  Google Scholar 

  12. LeWitt PAS, Huber BR, Zhang J (2013) An update on CSF biomarkers of Parkinson’s disease. In: Mandel S (ed) Neurodegenerative diseases: integrative PPPM approach as the medicine of the future. Springer, Dordrecht, pp 161–184

    Chapter  Google Scholar 

  13. Magdalinou N, Lees AJ, Zetterberg H (2014) Cerebrospinal fluid biomarkers in parkinsonian conditions: an update and future directions. J Neurol Neurosurg Psychiatry 85(10):1065–1075. https://doi.org/10.1136/jnnp-2013-307539

    Article  PubMed  Google Scholar 

  14. Gramotnev G, Gramotnev DK, Gramotnev A (2019) Parkinson’s disease prognostic scores for progression of cognitive decline. Sci Rep 9(1):17485. https://doi.org/10.1038/s41598-019-54029-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mollenhauer B, Caspell-Garcia CJ, Coffey CS et al (2017) Longitudinal CSF biomarkers in patients with early Parkinson’s disease and healthy controls. Neurology 89(19):1959–1969. https://doi.org/10.1212/WNL.0000000000004609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parnetti L, Gaetani L, Eusebi P et al (2019) CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 18(6):573–586. https://doi.org/10.1016/S1474-4422(19)30024-9

    Article  CAS  PubMed  Google Scholar 

  17. Ge F, Ding J, Liu Y, Lin H, Chang T (2018) Cerebrospinal fluid NFL in the differential diagnosis of parkinsonian disorders: a meta-analysis. Neurosci Lett 685:35–41. https://doi.org/10.1016/j.neulet.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  18. Gasser T (2009) Genomic and proteomic biomarkers for Parkinson disease. Neurology 17(7 Suppl):S27–S31. https://doi.org/10.1212/WNL.0b013e318198e054

    Article  CAS  Google Scholar 

  19. Chung EJ, Kim EG, Bae JS et al (2009) Usefulness of diffusion-weighted MRI for differentiation between Parkinson’s disease and Parkinson variant of multiple system atrophy. J Mov Disord 2(2):64–68. https://doi.org/10.14802/jmd.09017

    Article  PubMed  PubMed Central  Google Scholar 

  20. Skoloudík D, Jelínková M, Blahuta J et al (2014) Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol 35(12):2273–2278. https://doi.org/10.3174/ajnr.A4049

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5:34. https://doi.org/10.3389/fnagi.2013.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seppi K, Schocke MF, Esterhammer R et al (2003) Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 60(6):922–927. https://doi.org/10.1212/01.WNL.0000049911.91657.9D

    Article  CAS  PubMed  Google Scholar 

  23. Saeed U, Compagnone J, Aviv RI et al (2017) Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener 6:8. https://doi.org/10.1186/s40035-017-0076-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazuel L, Chassain C, Jean B et al (2016) Proton MR spectroscopy for diagnosis and evaluation of treatment efficacy in Parkinson disease. Radiology 278(2):505–513. https://doi.org/10.1148/radiol.2015142764

    Article  PubMed  Google Scholar 

  25. Histed SN, Lindenberg ML, Mena E et al (2012) Review of functional/anatomic imaging in oncology. Nucl Med Commun 33(4):349–361. https://doi.org/10.1097/MNM.0b013e32834ec8a5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Zhang Q, Li H, Zhang H (2012) SPECT molecular imaging in Parkinson’s disease. J Biomed Biotechnol 2012:412486. https://doi.org/10.1155/2012/412486

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brooks DJ (2016) Molecular imaging of dopamine transporters. Ageing Res Rev 30:114–121. https://doi.org/10.1016/j.arr.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  28. Reiche W, Grundmann M, Huber G (1995) Dopamine (D2) receptor SPECT with 123I-iodobenzamide (IBZM) in diagnosis of Parkinson syndrome. Radiologie 35(11):838–843

    CAS  Google Scholar 

  29. Sasaki T, Amano T, Hashimoto J, Itoh Y, Muramatsu K, Kubo A et al (2003) SPECT imaging using [123I] beta-CIT and [123I] IBF in extrapyramidal diseases. No To Shinkei 55(1):57–64

    PubMed  Google Scholar 

  30. Pirker W, Asenbaum S, Wenger SL et al (1997) Iodine-123-epidepride-SPECT: studies in Parkinson’s disease, multiple system atrophy and Huntington’s disease. J Nucl Med 38(11):1711–1717

    CAS  PubMed  Google Scholar 

  31. Yonekura Y, Saji H, Iwasaki Y, Tsuchida T, Fukuyama H, Shimatsu A et al (1995) Initial clinical experiences with dopamine D2 receptor imaging by means of 2′-iodospiperone and single-photon emission computed tomography. Ann Nucl Med 9(3):131–136. https://doi.org/10.1007/BF03165039

    Article  CAS  PubMed  Google Scholar 

  32. Niethammer M, Feigin A, Eidelberg D (2012) Functional neuroimaging in Parkinson’s disease. Cold Spring Harb Perspect Med 2(5):a009274. https://doi.org/10.1101/cshperspect.a009274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldstein DS (2001) Cardiac sympathetic neuroimaging to distinguish multiple system atrophy from Parkinson disease. Clin Auton Res 11(6):341–342. https://doi.org/10.1007/BF02292764

    Article  CAS  PubMed  Google Scholar 

  34. Fazio P, Svenningsson P, Forsberg A, Jönsson EG, Amini N, Nakao R, Nag S, Halldin C, Farde L, Varrone A (2015) Quantitative analysis of 18F-(E)-N-(3-Iodoprop-2-Enyl)-2β-carbofluoroethoxy-3β-(4′-methyl-phenyl) nortropane binding to the dopamine transporter in Parkinson disease. J Nucl Med 56(5):714–720. https://doi.org/10.2967/jnumed.114.152421

    Article  CAS  PubMed  Google Scholar 

  35. Oh JK, Choi EK, Song IU, Kim JS, Chung YA (2015) Comparison of I-123 MIBG planar imaging and SPECT for the detection of decreased heart uptake in Parkinson disease. J Neural Transm (Vienna) 122(10):1421–1427. https://doi.org/10.1007/s00702-015-1409-1

    Article  CAS  Google Scholar 

  36. Goldstein DS (2013) Sympathetic neuroimaging. Handb Clin Neurol 117:365–370. https://doi.org/10.1016/B978-0-444-53491-0.00029-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rinne J, Ruottinen H, Bergman J et al (1999) Usefulness of a dopamine transporter PET ligand [(18)F] β-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 67(6):737–741. https://doi.org/10.1136/jnnp.67.6.737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arlicot N, Vercouillie J, Malherbe C, Bidault R, Gissot V, Maia S et al (2019) PET imaging of dopamine transporter with [18F] LBT-999: initial evaluation in healthy volunteers. Q J Nucl Med Mol Imaging. https://doi.org/10.23736/S1824-4785.19.03175-3

  39. Lin K, Weng YH, Hsieh CJ et al (2013) Brain imaging of vesicular monoamine transporter type 2 in healthy aging subjects by 18F-FP-(+)-DTBZ PET. PLoS One 8(9):e75952. https://doi.org/10.1371/journal.pone.0075952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tong J, Wilson A, Boileau I, Houle S, Kish SJ (2008) Dopamine modulating drugs influence striatal (+)-[11C] DTBZ binding in rats: VMAT2 binding is sensitive to changes in vesicular dopamine concentration. Synapse 62(11):873–876. https://doi.org/10.1002/syn.20573

    Article  CAS  PubMed  Google Scholar 

  41. Bohnen NI, Albin RL, Koeppe RA et al (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 26(9):1198–1212. https://doi.org/10.1038/sj.jcbfm.9600276

    Article  CAS  PubMed  Google Scholar 

  42. Surguchov A (2015) Intracellular dynamics of synucleins: here, there and everywhere. Int Rev Cell Mol Biol 320:103–169. https://doi.org/10.1016/bs.ircmb.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  43. Borghi R, Marchese R, Negro A et al (2000) Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett 287(1):65–67. https://doi.org/10.1016/s0304-3940(00)01153-8

    Article  CAS  PubMed  Google Scholar 

  44. Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275(34):26515–26522. https://doi.org/10.1074/jbc.M003542200

    Article  CAS  PubMed  Google Scholar 

  45. Hansson O, Hall S, Ohrfelt A et al (2014) Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther 63(25). https://doi.org/10.1186/alzrt255

  46. Stewart T, Sossi V, Aasly JO et al (2015) Phosphorylated α-synuclein in Parkinson’s disease: correlation depends on disease severity. Acta Neuropathol Commun 3(7). https://doi.org/10.1186/s40478-015-0185-3

  47. Lin CH, Liu HC, Yang SY et al (2019) Plasma pS129-α-synuclein is a surrogate biofluid marker of motor severity and progression in Parkinson’s disease. J Clin Med 8(10). https://doi.org/10.3390/jcm8101601

  48. Surgucheva I, Newell KL, Burns J, Surguchov A (2014) New α- and γ-synuclein immunopathological lesions in human brain. Acta Neuropathol Commun 2(132). https://doi.org/10.1186/s40478-014-0132-8

  49. Figura M, Friedman A (2020) In search of Parkinson’s disease biomarkers—is the answer in our mouths? A systematic review of the literature on salivary biomarkers of Parkinson’s disease. Neurol Neurochir Pol 54(1):14–20. https://doi.org/10.5603/PJNNS.a2020.0011

    Article  PubMed  Google Scholar 

  50. Fayyad M, Salim S, Majbour N et al (2019) Parkinson’s disease biomarkers based on α-synuclein. J Neurochem 150(5):626–636. https://doi.org/10.1111/jnc.14809

    Article  CAS  PubMed  Google Scholar 

  51. Visanji NP, Lang AE, Kovacs GG (2019) Beyond the synucleinopathies: alpha synuclein as a driving force in neurodegenerative comorbidities. Transl Neurodegener 8:28. https://doi.org/10.1186/s40035-019-0172-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Twohig D, Nielsen HM (2019) α-Synuclein in the pathophysiology of Alzheimer’s disease. Mol Neurodegener 14(1):23. https://doi.org/10.1186/s13024-019-0320-x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bongianni M, Ladogana A, Capaldi S et al (2019) α-Synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann Clin Transl Neurol 6(10):2120–2126. https://doi.org/10.1002/acn3.50897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Luca CMG, Elia AE, Portaleone SM et al (2019) Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl Neurodegener 8:24. https://doi.org/10.1186/s40035-019-0164-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garrido A, Fairfoul G, Tolosa ES, Martí MJ, Green A Barcelona LRRK2 Study Group (2019) α-synuclein RT-QuIC in cerebrospinal fluid of LRRK2-linked Parkinson’s disease. Ann Clin Transl Neurol 6(6):1024–1032. https://doi.org/10.1002/acn3.772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Rumund A, Green AJE, Fairfoul G et al (2019) α-Synuclein real-time quaking-induced conversion in the cerebrospinal fluid of uncertain cases of Parkinsonism. Ann Neurol 85(5):777–781. https://doi.org/10.1002/ana.25447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Atarashi R, Sano K, Satoh K, Nishida N (2011) Real-time quaking-induced conversion. A highly sensitive assay for prion detection. Prion 5(3):150–153. https://doi.org/10.4161/pri.5.3.16893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmitz M, Cramm M, Llorens F et al (2016) The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc 11(11):2233–2242. https://doi.org/10.1038/nprot.2016.120

    Article  CAS  PubMed  Google Scholar 

  59. Fairfoul G, McGuire LI, Pal S et al (2016) Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol 3(10):812–818. https://doi.org/10.1002/acn3.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Herva ME, Zibaee S, Fraser G et al (2014) Anti-amyloid compounds inhibit α-synuclein aggregation induced by protein misfolding cyclic amplification (PMCA). J Biol Chem 289(17):11897–11905. https://doi.org/10.1074/jbc.M113.542340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Surguchov A (2020) Analysis of protein conformational strains—a key for new diagnostic methods of human diseases. Int J Mol Sci 21(8):E2801. https://doi.org/10.3390/ijms21082801

    Article  CAS  PubMed  Google Scholar 

  62. Shahnawaz M, Mukherjee A, Pritzkow S et al (2020) Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578(7794):273–277. https://doi.org/10.1038/s41586-020-1984-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Burgos K, Malenica I, Metpally R et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 9(5):e94839. https://doi.org/10.1371/journal.pone.0094839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nuzziello N, Ciaccia L, Liguori M (2019) Precision medicine in neurodegenerative diseases: some promising tips coming from the microRNAs’ world. Cell 9(1):75. https://doi.org/10.3390/cells9010075

    Article  CAS  Google Scholar 

  65. Schwienbacher C, Foco L, Picard A et al (2017) Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease. J Mol Neurosci 62(2):244–254. https://doi.org/10.1007/s12031-017-0926-9

    Article  CAS  PubMed  Google Scholar 

  66. Serafin A, Foco L, Zanigni S et al (2015) Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology 84(7):645–653. https://doi.org/10.1212/WNL.000000000000125860

    Article  CAS  PubMed  Google Scholar 

  67. Doxakis E (2020) Cell-free microRNAs in Parkinson’s disease: potential biomarkers that provide new insights into disease pathogenesis. Ageing Res Rev 58:101023. https://doi.org/10.1016/j.arr.2020.101023

    Article  CAS  PubMed  Google Scholar 

  68. Martinez B, Peplow PV (2017) MicroRNAs in Parkinson’s disease and emerging therapeutic targets. Neural Regen Res 12(12):1945–1959. https://doi.org/10.4103/1673-5374.221147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Surguchev AA, Surguchov A (2017) Synucleins and gene expression: ramblers in a crowd or cops regulating traffic? Front Mol Neurosci 10:224. https://doi.org/10.3389/fnmol.2017.00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fan Z, Pan YT, Zhang ZY et al (2020) Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J Neuroinflammation 17(1):11. https://doi.org/10.1186/s12974-019-1670-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee E, Hwang I, Park S et al (2019) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 26(2):213–228. https://doi.org/10.1038/s41418-018-0124-5

    Article  CAS  PubMed  Google Scholar 

  72. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  73. Gordon R, Albornoz EA, Christie DC et al (2018) Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med 10(456). https://doi.org/10.1126/scitranslmed.aah4066

  74. Alcocer-Gómez E, Castejón-Vega B, López-Sánchez M, Cordero MD (2018) Inflammasomes in clinical practice: a brief introduction. Exp Suppl 108:1–8. https://doi.org/10.1007/978-3-319-89390-7_1

    Article  CAS  PubMed  Google Scholar 

  75. Zhou K, Shi L, Wang Y, Chen S, Zhang J (2016) Recent advances of the NLRP3 inflammasome in central nervous system disorders. J Immunol Res 2016:9238290. https://doi.org/10.1155/2016/9238290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Campolo M, Paterniti I, Siracusa R et al (2019) TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model. Brain Behav Immun 76:236–247. https://doi.org/10.1016/j.bbi.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  77. Santaella A, Kuiperij HB, van Rumund A et al (2020) Inflammation biomarker discovery in Parkinson’s disease and atypical parkinsonisms. BMC Neurol 20(1):26. https://doi.org/10.1186/s12883-020-1608-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ng ASL, Tan YJ, Lu Z et al (2020) Plasma ubiquitin C-terminal hydrolase L1 levels reflect disease stage and motor severity in Parkinson’s disease. Aging 12(2):1488–1495. https://doi.org/10.18632/aging.102695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mondello S, Constantinescu R, Zetterberg H et al (2014) CSF α-synuclein and UCH-L1 levels in Parkinson’s disease and atypical parkinsonian disorders. Parkinsonism Relat Disord 20(4):382–387. https://doi.org/10.1016/j.parkreldis.2014.01.011

    Article  PubMed  Google Scholar 

  80. Abdo WF, De Jong D, Hendriks JC et al (2004) Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Mov Disord 19(5):571–579. https://doi.org/10.1002/mds.10714

    Article  PubMed  Google Scholar 

  81. Sako W, Murakami N, Izumi Y, Kaji R (2015) Neurofilament light chain level in cerebrospinal fluid can differentiate Parkinson’s disease from atypical Parkinsonism: evidence from a meta-analysis. J Neurol Sci 352(1–2):84–87. https://doi.org/10.1016/j.jns.2015.03.041

    Article  CAS  PubMed  Google Scholar 

  82. Herbert MK, Aerts MB, Beenes M et al (2015) CSF neurofilament light chain but not FLT3 ligand discriminates Parkinsonian disorders. Front Neurol 5(6):91. https://doi.org/10.3389/fneur.2015.00091

    Article  Google Scholar 

  83. Lin CH, Li CH, Yang KC et al (2019) Blood NfL: a biomarker for disease severity and progression in Parkinson disease. Neurology 93(11):e1104–e1111. https://doi.org/10.1212/WNL.0000000000008088

    Article  CAS  PubMed  Google Scholar 

  84. Drechsel J, Mandl FA, Sieber SA (2018) Chemical probe to monitor the Parkinsonism-associated protein DJ-1 in live cells. ACS Chem Biol 13(8):2016–2019. https://doi.org/10.1021/acschembio.8b00633

    Article  CAS  PubMed  Google Scholar 

  85. Yamagishi Y, Saigoh K, Saito Y et al (2018) Diagnosis of Parkinson’s disease and the level of oxidized DJ-1 protein. Neurosci Res 128:58–62. https://doi.org/10.1016/j.neures.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  86. Farotti L, Paciotti S, Tasegian A, Eusebi P, Parnetti L (2017) Discovery, validation and optimization of cerebrospinal fluid biomarkers for use in Parkinson’s disease. Expert Rev Mol Diagn 17(8):771–780. https://doi.org/10.1080/14737159.2017.1341312

    Article  CAS  PubMed  Google Scholar 

  87. DosSantos MCT, Scheller D, Schulte C et al (2018) Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson’s disease diagnosis. PLoS One 13(11):e0206536. https://doi.org/10.1371/journal.pone.0206536

    Article  CAS  Google Scholar 

  88. Shi M, Furay AR, Sossi V, Aasly JO et al (2012) DJ-1 and αSYN in LRRK2 CSF do not correlate with striatal dopaminergic function. Neurobiol Aging 33(4):836.e5–836.e7. https://doi.org/10.1016/j.neurobiolaging.2011.09.01

    Article  CAS  Google Scholar 

  89. Zhao ZH, Chen ZT, Zhou RL et al (2019) Increased DJ-1 and α-synuclein in plasma neural-derived exosomes as potential markers for Parkinson’s disease. Front Aging Neurosci 10:438. https://doi.org/10.3389/fnagi.2018.00438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Imperatore R, Palomba L, Cristino L (2017) Role of Orexin-a in hypertension and obesity. Curr Hypertens Rep 19(4):34. https://doi.org/10.1007/s11906-017-0729-y

    Article  CAS  PubMed  Google Scholar 

  91. Fronczek R, Overeem S, Lee SY et al (2007) Hypocretin (orexin) loss in Parkinson’s disease. Brain 130(6):1577–1585. https://doi.org/10.1093/brain/awm090

    Article  PubMed  Google Scholar 

  92. Wienecke M, Werth E, Poryazova R et al (2012) Progressive dopamine and hypocretin deficiencies in Parkinson’s disease: is there an impact on sleep and wakefulness? J Sleep Res 21(6):710–717. https://doi.org/10.1111/j.1365-2869.2012.01027

    Article  PubMed  Google Scholar 

  93. Kikuchi Y, Yasuhara T, Agari T et al (2011) Urinary 8-OHdG elevations in a partial lesion rat model of Parkinson’s disease correlate with behavioral symptoms and nigrostriatal dopaminergic depletion. J Cell Physiol 226(5):1390–1398. https://doi.org/10.1002/jcp.22467

    Article  CAS  PubMed  Google Scholar 

  94. Loeffler DA, Aasly JO, LeWitt PA, Coffey MP (2019) What have we learned from cerebrospinal fluid studies about biomarkers for detecting LRRK2 Parkinson’s disease patients and healthy subjects with Parkinson’s-associated LRRK2 mutations? J Parkinsons Dis 9(3):467–488. https://doi.org/10.3233/JPD-191630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van der Zee S, Vermeiren Y, Fransen E et al (2018) Monoaminergic markers across the cognitive spectrum of Lewy body disease. J Parkinsons Dis 8(1):71–84. https://doi.org/10.3233/JPD-171228

    Article  CAS  PubMed  Google Scholar 

  96. Vermeiren Y, De Deyn PP (2017) Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: the locus coeruleus story. Neurochem Int 102:22–32. https://doi.org/10.1016/j.neuint.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  97. Goldstein DS, Kopin IJ, Sharabi Y (2014) Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 144(3):268–282. https://doi.org/10.1016/j.pharmthera.2014.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y (2018) Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Parkinsonism Relat Disord 50:108–112. https://doi.org/10.1016/j.parkreldis.2018.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cersosimo MG, Benarroch EE (2012) Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci 313(1–2):57–63. https://doi.org/10.1016/j.jns.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  100. Scheperjans F, Aho V, Pereira PA et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358. https://doi.org/10.1002/mds.26069

    Article  PubMed  Google Scholar 

  101. Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21(37):10609–10620. https://doi.org/10.3748/wjg.v21.i37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scheperjans F, Derkinderen P, Borghammer P (2018) The gut and Parkinson’s disease: hype or hope? J Parkinsons Dis 8(s1):S31–S39. https://doi.org/10.3233/JPD-181477

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vidal-Martinez G, Chin B, Camarillo C et al (2019) A pilot microbiota study in Parkinson’s disease patients versus control subjects, and effects of FTY720 and FTY720-mitoxy therapies in parkinsonian and multiple system atrophy mouse models. J Parkinsons Dis 10(1):185–192. https://doi.org/10.3233/JPD-191693

    Article  CAS  Google Scholar 

  104. van Kessel SP, El Aidy S (2019) Bacterial metabolites mirror altered gut microbiota composition in patients with Parkinson’s disease. J Parkinsons Dis 9(s2):S359–S370. https://doi.org/10.3233/JPD-191780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuron inflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Benitez BA, Davis AA, Jin SC et al (2016) Resequencing analysis of five Mendelian genes and the top genes from genome-wide association studies in Parkinson’s disease. Mol Neurodegener 11:29. https://doi.org/10.1186/s13024-016-0097-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chartier-Harlin MC, Kachergus J, Roumier C (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9):1167–1169. https://doi.org/10.1016/S0140-6736(04)17103-1

    Article  CAS  PubMed  Google Scholar 

  108. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  PubMed  Google Scholar 

  109. Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. https://doi.org/10.1126/science.1090278

    Article  CAS  Google Scholar 

  110. Bozi M, Papadimitriou D, Antonellou R et al (2014) Genetic assessment of familial and early-onset Parkinson’s disease in a Greek population. Eur J Neurol 21(7):963–968.12. https://doi.org/10.1111/ene.12315

    Article  CAS  PubMed  Google Scholar 

  111. Alcalay RN, Caccappolo E, Mejia-Santana H et al (2012) Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology 78(18):1434–1440. https://doi.org/10.1212/WNL.0b013e318253d54b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ptashne M (2007) On the use of the word ‘epigenetic’. Curr Biol 17(7):R233–R236. https://doi.org/10.1016/j.cub.2007.02.030

    Article  CAS  PubMed  Google Scholar 

  113. Feng Y, Jankovic J, Wu YC (2015) Epigenetic mechanisms in Parkinson’s disease. J Neurol Sci 349(1–2):3–9. https://doi.org/10.1016/j.jns.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  114. Tan YY, Wu L, Zhao ZB et al (2014) Methylation of alpha-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson’s disease patients. Parkinsonism Relat Disord 20(3):308–313. https://doi.org/10.1016/j.parkreldis.2013.12.002

    Article  PubMed  Google Scholar 

  115. Margis R, Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 152(3):96–101. https://doi.org/10.1016/j.jbiotec.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  116. Jowaed A, Schmitt I, Kaut O, Wüllner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30(18):6355–6359. https://doi.org/10.1523/JNEUROSCI.6119-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmitt I, Kaut O, Khazneh H et al (2015) L-dopa increases alpha-synuclein DNA methylation in Parkinson’s disease patients in vivo and in vitro. Mov Disord 30(13):1794–1801. https://doi.org/10.1002/mds.26319

    Article  CAS  PubMed  Google Scholar 

  118. Henderson-Smith A, Fisch KM, Hua J et al (2019) DNA methylation changes associated with Parkinson’s disease progression: outcomes from the first longitudinal genome-wide methylation analysis. Epigenetics 14(4):365–382. https://doi.org/10.1080/15592294.2019.1588682

    Article  PubMed  PubMed Central  Google Scholar 

  119. Thompson AJ, Banwell BL, Barkhof F et al (2017) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  120. Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85(2):177–189. https://doi.org/10.1212/WNL.0000000000001729

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zerr I, Zafar S, Schmitz M, Llorens F (2018) Cerebrospinal fluid in Creutzfeldt-Jakob disease. Handb Clin Neurol 146:115–124. https://doi.org/10.1016/B978-0-12-804279-3.00008-3

    Article  Google Scholar 

  122. Bousiges O, Cretin B, Lavaux T et al (2016) Diagnostic value of cerebrospinal fluid biomarkers (phospho-Tau181, total-Tau, Abeta42, and Abeta40) in prodromal stage of Alzheimer’s disease and dementia with Lewy bodies. J Alzheimers Dis 51(4):1069–1083. https://doi.org/10.3233/JAD-150731

    Article  CAS  PubMed  Google Scholar 

  123. Posavi M, Diaz-Ortiz M, Liu B et al (2019) Characterization of Parkinson’s disease using blood-based biomarkers: a multicohort proteomic analysis. PLoS Med 16(10):e1002931. https://doi.org/10.1371/journal.pmed.1002931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Deweerdt S (2016) Parkinson’s disease: 4 big questions. Nature 538(7626):S17. https://doi.org/10.1038/538S17a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Veterans Affairs grants I01BX000361 and the Glaucoma Foundation grant QB42308.

Funding

Andrei Surguchov received research grants from VA Merit Review grant 1I01BX000361 and the Glaucoma Foundation grant QB42308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Surguchov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Surguchov, A. (2022). Biomarkers in Parkinson’s Disease. In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics