Skip to main content

Biochemical and Biological Assays of Mycolactone-Mediated Inhibition of Sec61

  • Protocol
  • First Online:
Book cover Mycobacterium ulcerans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2387))

Abstract

Mycobacterium ulcerans, the causative agent of Buruli ulcer disease, is unique among human pathogens in its capacity to produce mycolactone, a diffusible macrolide with immunosuppressive and cytotoxic properties. Recent studies have shown that mycolactone operates by inhibiting the host membrane translocation complex (Sec61), with an unprecedented potency compared to previously identified Sec61 blockers. Mycolactone binding to the pore-forming subunit of Sec61 inhibits its capacity to transport nascent secretory and membrane proteins into the endoplasmic reticulum, leading to their cytosolic degradation by the ubiquitin:proteasome system. In T lymphocytes, Sec61 blockade by mycolactone manifests as a sharp decrease in the cell’s ability to express homing receptors and release cytokines following activation. Sustained exposure of human cells to mycolactone typically generates proteotoxic stress responses in their cytosol and endoplasmic reticulum (ER), ultimately inducing apoptosis. Here we describe cell-free systems for studying Sec61-mediated protein translocation that allow the impact of mycolactone on the biogenesis of secretory and membrane proteins to be probed. We also describe biological assays of mycolactone-driven inhibition of Sec61 providing rapid and sensitive means to quantitatively assess the presence of the toxin in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nyathi Y, Wilkinson BM, Pool MR (2013) Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Res 1833:2392–2402

    Article  CAS  Google Scholar 

  2. Voorhees RM, Hegde RS (2016) Structure of the Sec61 channel opened by a signal sequence. Science 351:88–91. https://doi.org/10.1126/science.aad4992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walter P, Blobel G (1983) Preparation of microsomal-membranes for Cotranslational protein translocation. Methods Enzymol 96:84–93

    Article  CAS  Google Scholar 

  4. Pool M, Dobberstein B (2011) Cotranslational translocation of proteins into Microsomes: methods. In: Encyclopedia of life sciences. John Wiley & Sons, Ltd, Chichester, UK

    Google Scholar 

  5. Sharma A, Mariappan M, Appathurai S, Hegde RS (2010) In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol Biol 619:339–363. https://doi.org/10.1007/978-1-60327-412-8_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson N, Powis K, High S (2013) Post-translational translocation into the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Res 1833:2403–2409. https://doi.org/10.1016/j.bbamcr.2012.12.008

    Article  CAS  Google Scholar 

  7. Haßdenteufel S, Nguyen D, Helms V, Lang S, Zimmermann R (2019) ER import of small human presecretory proteins: components and mechanisms. FEBS Lett 593(18):2506–2524. https://doi.org/10.1002/1873-3468.13542

    Article  CAS  PubMed  Google Scholar 

  8. Oliver JD, Van Der Wal FJ, Bulleid NJ, High S (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 593(18):2506–2524. https://doi.org/10.1126/science.275.5296.86

    Article  Google Scholar 

  9. Oliver JD, Roderick HL, Llewellyn DH, High S (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 10(8):2573–2582. https://doi.org/10.1091/mbc.10.8.2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlson E, Bays N, David L, Skach WR (2005) Reticulocyte lysate as a model system to study endoplasmic reticulum membrane protein degradation. Methods Mol Biol 301:185–205

    CAS  PubMed  Google Scholar 

  11. Cross BCS, McKibbin C, Callan AC, Roboti P, Piacenti M, Rabu C, Wilson CM, Whitehead R, Flitsch SL, Pool MR, High S, Swanton E (2009) Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J Cell Sci 122:4393–4400. https://doi.org/10.1242/jcs.054494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gamayun I, O’Keefe S, Pick T, Klein MC, Nguyen D, McKibbin C, Piacenti M, Williams HM, Flitsch SL, Whitehead RC, Swanton E, Helms V, High S, Zimmermann R, Cavalié A (2019) Eeyarestatin compounds selectively enhance Sec61-mediated ca 2+ leakage from the endoplasmic reticulum. Cell Chem Biol 26(4):571–583.e6. https://doi.org/10.1016/j.chembiol.2019.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hall B, Simmonds R (2014) Pleiotropic molecular effects of the mycobacterium ulcerans virulence factor mycolactone underlying the cell death and immunosuppression seen in Buruli ulcer. Biochem Soc Trans 42:177–183. https://doi.org/10.1042/BST20130133

    Article  CAS  PubMed  Google Scholar 

  14. McKenna M, Simmonds RE, High S (2016) Mechanistic insights into the inhibition of Sec61-dependent co- and post-translational translocation by mycolactone. J Cell Sci 129(7):1404–1415. https://doi.org/10.1242/jcs.182352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKenna M, Simmonds RE, High S (2017) Mycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis. J Cell Sci 130:1307–1320. https://doi.org/10.1242/jcs.198655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baron L, Paatero AO, Morel J-D, Impens F, Guenin-Macé L, Saint-Auret S, Blanchard N, Dillmann R, Niang F, Pellegrini S, Taunton J, Paavilainen VO, Demangel C (2016) Mycolactone subverts immunity by selectively blocking the Sec61 translocon. J Exp Med 213:2885–2896. https://doi.org/10.1084/jem.20160662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demangel C, High S (2018) Sec61 blockade by mycolactone: a central mechanism in Buruli ulcer disease. Biol Cell 110(11):237–248. https://doi.org/10.1111/boc.201800030

    Article  CAS  PubMed  Google Scholar 

  18. Vermeire K, Bell TW, Van Puyenbroeck V, Giraut A, Noppen S, Liekens S, Schols D, Hartmann E, Kalies KU, Marsh M (2014) Signal peptide-binding drug as a selective inhibitor of co-translational protein translocation. PLoS Biol 12(12):e1002011. https://doi.org/10.1371/journal.pbio.1002011

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mackinnon AL, Paavilainen VO, Sharma A, Hegde RS, Taunton J (2014) An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate. elife 3:e01483. https://doi.org/10.7554/eLife.01483

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zong G, Hu Z, O’Keefe S, Tranter D, Iannotti MJ, Baron L, Hall B, Corfield K, Paatero AO, Henderson MJ, Roboti P, Zhou J, Sun X, Govindarajan M, Rohde JM, Blanchard N, Simmonds R, Inglese J, Du Y, Demangel C, High S, Paavilainen VO, Shi WQ (2019) Ipomoeassin F binds Sec61α to inhibit protein translocation. J Am Chem Soc 141:8450–8461. https://doi.org/10.1021/jacs.8b13506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Keefe S, Roebuck QP, Nakagome I, Hirono S, Kato A, Nash R, High S (2019) Characterizing the selectivity of ER α-glucosidase inhibitors. Glycobiology 29(7):530–542. https://doi.org/10.1093/glycob/cwz029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Demangel C (2021) Immunity against Mycobacterium ulcerans: the subversive role of mycolactone. Immunol Rev 301(1):209–221. PMID: 33607704

    Article  CAS  Google Scholar 

  23. O’Keefe S, Zong G, Duah KB, Andrews LE, Shi WQ, High S (2021) An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum. Commun Biol 4(1):828. PMID: 34211117

    Article  Google Scholar 

  24. Grotzke JEE, Kozik P, Morel J-DD, Impens F, Pietrosemoli N, Cresswell P, Amigorena S, Demangel C (2017) Sec61 blockade by mycolactone inhibits antigen cross-presentation independently of endosome-to-cytosol export. Proc Natl Acad Sci U S A 114:E5910–E5919. https://doi.org/10.1073/pnas.1705242114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morel J-D, Paatero AO, Wei J, Yewdell JW, Guenin-Macé L, Van Haver D, Impens F, Pietrosemoli N, Paavilainen VO, Demangel C (2018) Proteomics reveals scope of mycolactone-mediated Sec61 blockade and distinctive stress signature. Mol Cell Proteomics 17(9):1750–1765. https://doi.org/10.1074/mcp.RA118.000824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guenin-Mace L, Carrette F, Asperti-Boursin F, Le Bon A, Caleechurn L, Di Bartolo V, Fontanet A, Bismuth G, Demangel C (2011) Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression. Proc Natl Acad Sci U S A 108:12833–12838. https://doi.org/10.1073/pnas.1016496108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guenin-Mace L, Baron L, Chany AC, Tresse C, Saint-Auret S, Jonsson F, Le Chevalier F, Bruhns P, Bismuth G, Hidalgo-Lucas S, Bisson JF, Blanchard N, Demangel C (2015) Shaping mycolactone for therapeutic use against inflammatory disorders. Sci Transl Med 7:289ra85. https://doi.org/10.1126/scitranslmed.aab0458

    Article  CAS  PubMed  Google Scholar 

  28. Marion E, Prado S, Cano C, Babonneau J, Ghamrawi S, Marsollier L (2012) Photodegradation of the mycobacterium ulcerans toxin, mycolactones: considerations for handling and storage. PLoS One 7(4):e33600. https://doi.org/10.1371/journal.pone.0033600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sambrook J, Russell DW (2006) SDS-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb Protoc 2006:pdb.prot4540-pdb.prot4540. https://doi.org/10.1101/pdb.prot4540

    Article  Google Scholar 

  30. Stamova S, Michalk I, Bartsch H, Bachmann M (2012) Gel drying methods. Methods Mol Biol 869:433–436

    Article  CAS  Google Scholar 

  31. Voytas D, Ke N (2001) Detection and quantitation of radiolabeled proteins in gels and blots. Curr Protoc Toxicol. ;Chapter 6:Unit 6.3. https://doi.org/10.1002/0471140856.txa03ds07

  32. Lorenz TC (2012) Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. https://doi.org/10.3791/3998

  33. Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. https://doi.org/10.3791/3923

  34. Jackson RJ, Hunt T (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol 96:50–74. https://doi.org/10.1016/S0076-6879(83)96008-1

    Article  CAS  PubMed  Google Scholar 

  35. Datta A, De Haro C, Sierra JM, Ochoa S (1977) Mechanism of translational control by hemin in reticulocyte lysates. Proc Natl Acad Sci U S A 74(8):3326–3329. https://doi.org/10.1073/pnas.74.8.3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song FB, Fidanze S, Benowitz AB, Kishi Y (2002) Total synthesis of the mycolactones. Org Lett 4:647–650. https://doi.org/10.1021/Ol0172828

    Article  CAS  PubMed  Google Scholar 

  37. Vermeire K, Allan S, Provinciael B, Hartmann E, Kalies KU (2015) Ribonuclease-neutralized pancreatic microsomal membranes from livestock for in vitro co-translational protein translocation. Anal Biochem 484:102–104. https://doi.org/10.1016/j.ab.2015.05.019

    Article  CAS  PubMed  Google Scholar 

  38. Wilson R, Allen AJ, Oliver J, Brookman JL, High S, Bulleid NJ (1995) The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biochem J 307:679–687. https://doi.org/10.1042/bj3070679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roboti P, High S (2012) The oligosaccharyltransferase subunits OST48, DAD1 and KCP2 function as ubiquitous and selective modulators of mammalian N-glycosylation. J Cell Sci. https://doi.org/10.1242/jcs.103952

  40. Azzam ME, Algranati ID (1973) Mechanism of puromycin action: fate of ribosomes after release of nascent protein chains from polysomes. Proc Natl Acad Sci U S A 70(12):3866–3869. https://doi.org/10.1073/pnas.70.12.3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trimble RB, Maley F (1984) Optimizing hydrolysis of N-linked high-mannose oligosaccharides by endo-β-N-acetylglucosaminidase H. Anal Biochem 141(2):515–522. https://doi.org/10.1016/0003-2697(84)90080-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Demangel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

O’Keefe, S., High, S., Demangel, C. (2022). Biochemical and Biological Assays of Mycolactone-Mediated Inhibition of Sec61. In: Pluschke, G., Röltgen, K. (eds) Mycobacterium ulcerans. Methods in Molecular Biology, vol 2387. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1779-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1779-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1778-6

  • Online ISBN: 978-1-0716-1779-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics