Skip to main content

Generation of Stable, Light-Driven Co-cultures of Cyanobacteria with Heterotrophic Microbes

  • Protocol
  • First Online:
Plant Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2379))

Abstract

Co-cultivation of an autotrophic species with one or more heterotrophic microbes is a strategy for photobiological production of high-value compounds and is relatively underexplored in comparison to cyanobacterial or microalgal monocultures. Long-term stability of such consortia is required for useful collaboration between the partners, and this property can be increased by encapsulation of phototrophic partners within a hydrogel. Encapsulated cyanobacteria have advantages relative to planktonic cultures that may be useful to explore the potential for artificial microbial communities for targeted biomolecule synthesis, such as increased control over population sizes and reduced liquid handling requirements. In this chapter, we describe a method for encapsulation of genetically modified cyanobacterial strain (Synechococcus elongatus PCC 7942, CscB+) into a sodium alginate matrix, and the utilization of these encapsulated cells to construct stable, artificial autotroph/heterotroph co-cultures. This method has applications for the study of phototroph-based synthetic microbial consortia, and multi-species photobiological production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ducat DC, Avelar-Rivas JA, Way JC et al (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78:2660–2668

    Article  CAS  Google Scholar 

  2. Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 123:285–295

    Article  CAS  Google Scholar 

  3. Du W, Liang F, Duan Y et al (2013) Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab Eng 19:17–25

    Article  CAS  Google Scholar 

  4. Niederholtmeyer H, Wolfstädter BT, Savage DF et al (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76:3462–3466

    Article  CAS  Google Scholar 

  5. Song K, Tan X, Liang Y et al (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol 100:7865–7875

    Article  CAS  Google Scholar 

  6. Tan X, Du W, Lu X (2015) Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria. Appl Microbiol Biotechnol 99:2147–2154

    Article  CAS  Google Scholar 

  7. Zhao C, Li Z, Li T et al (2015) High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002. Cell Discov 1:15004

    Article  CAS  Google Scholar 

  8. Jacobsen JH, Frigaard NU (2014) Engineering of photosynthetic mannitol biosynthesis from CO2in a cyanobacterium. Metab Eng 21:60

    Article  CAS  Google Scholar 

  9. Savakis P, Tan X, Du W et al (2015) Photosynthetic production of glycerol by a recombinant cyanobacterium. J Biotechnol 195:46

    Article  CAS  Google Scholar 

  10. van der Woude AD, Perez Gallego R, Vreugdenhil A et al (2016) Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol. Microb Cell Factories 15:60

    Article  Google Scholar 

  11. Li T, Li C-T, Butler K et al (2017) Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol Biofuels 10:55

    Article  CAS  Google Scholar 

  12. Hays SG, Yan LLW, Silver PA et al (2017) Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng 11:4

    Article  Google Scholar 

  13. Smith MJ, Francis MB (2017) Improving metabolite production in microbial co-cultures using a spatially constrained hydrogel. Biotechnol Bioeng 114:1195–1200

    Article  CAS  Google Scholar 

  14. Smith MJ, Francis MB (2016) A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals. ACS Synth Biol 5:955–961

    Article  CAS  Google Scholar 

  15. Löwe H, Hobmeier K, Moos M et al (2017) Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol Biofuels 10:190

    Article  Google Scholar 

  16. Ruiz-Güereca DA, Sánchez-Saavedra MP (2015) Growth and phosphorus removal by Synechococcus elongatus co-immobilized in alginate beads with Azospirillum brasilense. J Appl Phycol 28:1501–1507

    Article  Google Scholar 

  17. Xue C, Wang L, Wu T et al (2017) Characterization of co-cultivation of cyanobacteria on growth, productions of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity. Appl Biochem Biotechnol 181:340

    Article  CAS  Google Scholar 

  18. Weiss TL, Young EJ, Ducat DC (2017) A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab Eng 44:236–245

    Article  CAS  Google Scholar 

  19. Fedeson DT, Saake P, Calero P et al (2018) Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb Biotechnol 13:997

    Article  Google Scholar 

  20. Abed RMM, Köster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegrad 55:29

    Article  CAS  Google Scholar 

  21. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45

    Article  CAS  Google Scholar 

  22. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11:20140817

    Article  Google Scholar 

  23. Lee KYY, Mooney DJJ, Manuscript A et al (2013) Alginate: properties and biomedical applications. Prog Polym Sci 37:106

    Article  Google Scholar 

  24. Abramson B, Lensmire J, Yang-Tsung L et al (2018) Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-secreting cyanobacterium. Algal Res 33:248–255

    Article  Google Scholar 

  25. Junicke H, Feldman H, Van Loosdrecht MCM et al (2015) Limitation of syntrophic coculture growth by the acetogen. Biotechnol Bioeng 113:560–567

    Article  Google Scholar 

  26. Kosina SM, Danielewicz MA, Mohammed M et al (2016) Exometabolomics assisted design and validation of synthetic obligate mutualism. ACS Synth Biol 5:569

    Article  CAS  Google Scholar 

  27. Pande S, Shitut S, Freund L et al (2015) Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun 6:6238

    Article  CAS  Google Scholar 

  28. Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562

    Article  Google Scholar 

  29. Xuan YH, Hu YB, Chen L-Q et al (2013) Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci 110:E3685–E3694

    Article  CAS  Google Scholar 

  30. Archer CT, Kim JF, Jeong H et al (2011) The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12:9

    Article  CAS  Google Scholar 

  31. Arifin Y, Sabri S, Sugiarto H et al (2010) Deletion of cscR in Escherichia coli W improves growth and poly-3-hydroxybutyrate (PHB) production from sucrose in fed batch culture. J Biotechnol 156:275–278

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy (Grant: DE-FG02-91ER20021), as well as by NSF Grant CBET #1437657.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Ducat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, A.K., Ducat, D.C. (2022). Generation of Stable, Light-Driven Co-cultures of Cyanobacteria with Heterotrophic Microbes. In: Zurbriggen, M.D. (eds) Plant Synthetic Biology. Methods in Molecular Biology, vol 2379. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1791-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1791-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1790-8

  • Online ISBN: 978-1-0716-1791-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics