Skip to main content

Clinical Translation of Stimulated Raman Histology

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

Abstract

Stimulated Raman histology (SRH) images are created by the label-free, nondestructive imaging of tissue using stimulated Raman scattering (SRS) microscopy. In a matter of seconds, these images provide real-time histologic information on biopsied tissue in the operating room. SRS microscopy uses two lasers (pump beam and Stokes beam) to amplify the Raman signal of specific chemical bonds found in macromolecules (lipids, proteins, and nucleic acids) in these tissues. The concentrations of these macromolecules are used to produce image contrast. These images are acquired and displayed using an imaging system with five main components: (1) fiber coupled microscope, (2) dual-wavelength fiber-laser module, (3) laser control module, (4) microscope control module, and (5) a computer. This manuscript details how to assemble the dual-wavelength fiber-laser module and how to generate an SRH image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C et al (2008) Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science 322(5909):1857–1861

    Article  CAS  Google Scholar 

  2. Lu F-K, Basu S, Igras V, Hoang MP, Ji M, Fu D et al (2015) Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A 112(37):11624–11629

    Article  CAS  Google Scholar 

  3. Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR, Xie XS (2010) Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330(6009):1368–1370

    Article  CAS  Google Scholar 

  4. Ji M, Orringer DA, Freudiger CW, Ramkissoon S, Liu X, Lau D et al (2013) Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy. Sci Transl Med 5(201):201ra119

    Article  Google Scholar 

  5. Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S et al (2015) Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med 7(309):309ra163

    Article  Google Scholar 

  6. Freudiger CW, Yang W, Holtom GR, Peyghambarian N, Xie XS, Kieu KQ (2014) Stimulated Raman scattering microscopy with a robust fibre laser source. Nat Photonics 8(2):153–159

    Article  CAS  Google Scholar 

  7. Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys Rev Lett 82(20):4142–4145

    Article  CAS  Google Scholar 

  8. Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1(1):883–909

    Article  CAS  Google Scholar 

  9. Ozeki Y, Dake F, Kajiyama S, Fukui K, Itoh K (2009) Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt Express 17(5):3651

    Article  CAS  Google Scholar 

  10. Saar BG, Zeng Y, Freudiger CW, Liu Y-S, Himmel ME, Xie XS et al (2010) Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew Chem Int Ed Engl 49(32):5476–5479

    Article  CAS  Google Scholar 

  11. Ozeki Y, Umemura W, Otsuka Y, Satoh S, Hashimoto H, Sumimura K et al (2012) High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat Photonics 6(12):845–851

    Article  CAS  Google Scholar 

  12. Freudiger CW, Pfannl R, Orringer DA, Saar BG, Ji M, Zeng Q et al (2012) Multicolored stain-free histopathology with coherent Raman imaging. Lab Investig 92(10):1492–1502

    Article  CAS  Google Scholar 

  13. Ganikhanov F, Carrasco S, Sunney Xie X, Katz M, Seitz W, Kopf D (2006) Broadly tunable dual-wavelength light source for coherent anti-stokes Raman scattering microscopy. Opt Lett 31(9):1292

    Article  Google Scholar 

  14. Orringer DA, Pandian B, Niknafs YS, Hollon TC, Boyle J, Lewis S et al (2017) Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng 1(2):0027

    Article  Google Scholar 

  15. Kut C, Chaichana KL, Xi J, Raza SM, Ye X, McVeigh ER et al (2015) Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med 7(292):292ra100

    Article  Google Scholar 

  16. Foersch S, Heimann A, Ayyad A, Spoden GA, Florin L, Mpoukouvalas K et al (2012) Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo. PLoS One 7(7):e41760

    Article  CAS  Google Scholar 

  17. Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA et al (2011) Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg 115(4):740–748

    Article  CAS  Google Scholar 

  18. Witte S, Negrean A, Lodder JC, de Kock CPJ, Testa Silva G, Mansvelder HD et al (2011) Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci U S A 108(15):5970–5975

    Article  CAS  Google Scholar 

  19. Hollon T, Lewis S, Freudiger CW, Sunney Xie X, Orringer DA (2016) Improving the accuracy of brain tumor surgery via Raman-based technology. Neurosurg Focus 40(3):E9

    Article  Google Scholar 

  20. Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K et al (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7(274):274ra19

    Article  CAS  Google Scholar 

  21. Kalkanis SN, Kast RE, Rosenblum ML, Mikkelsen T, Yurgelevic SM, Nelson KM et al (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neuro-Oncol 116(3):477–485

    Article  CAS  Google Scholar 

  22. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    Article  CAS  Google Scholar 

  23. Orringer D, Lau D, Khatri S, Zamora-Berridi GJ, Zhang K, Wu C et al (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117(5):851–859

    Article  Google Scholar 

  24. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322(8):494–500

    Article  CAS  Google Scholar 

  25. Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8

    Article  Google Scholar 

  26. Pollack IF, Claassen D, Al-Shboul Q, Janosky JE, Deutsch M (1995) Low-grade gliomas of the cerebral hemispheres in children: an analysis of 71 cases. J Neurosurg 82(4):536–547

    Article  CAS  Google Scholar 

  27. Thompson EM, Hielscher T, Bouffet E, Remke M, Luu B, Gururangan S et al (2016) Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 17(4):484–495

    Article  CAS  Google Scholar 

  28. Tihan T, Zhou T, Holmes E, Burger PC, Ozuysal S, Rushing EJ (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s oncology group study and a review of prognostic factors. Mod Pathol 21(2):165–177

    Article  Google Scholar 

  29. Bégin S, Burgoyne B, Mercier V, Villeneuve A, Vallée R, Côté D (2011) Coherent anti-stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system. Biomed Opt Express 2(5):1296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Orringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Orillac, C., Hollon, T., Orringer, D.A. (2022). Clinical Translation of Stimulated Raman Histology. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics