Skip to main content

Anti-Tick Vaccines: Current Advances and Future Prospects

  • Protocol
  • First Online:
Vaccine Design

Abstract

Ticks are increasingly a global public health and veterinary concern. They transmit numerous pathogens that are of veterinary and public health importance. Acaricides, livestock breeding for tick resistance, tick handpicking, pasture spelling, and anti-tick vaccines (ATVs) are in use for the control of ticks and tick-borne diseases (TTBDs); acaricides and ATVs being the most and least used TTBD control methods respectively. The overuse and misuse of acaricides has inadvertently selected for tick strains that are resistant to acaricides. Furthermore, vaccines are rare and not commercially available in sub-Saharan Africa (SSA). It doesn’t help that many of the other methods are labor-intensive and found impractical especially for larger farm operations. The success of TTBD control is therefore dependent on integrating all the currently available methods. Vaccines have been shown to be cheap and effective. However, their large-scale deployment for TTBD control in SSA is hindered by commercial unavailability of efficacious anti-tick vaccines against sub-Saharan African tick strains. Thanks to advances in genomics, transcriptomics, and proteomics technologies, many promising anti-tick vaccine antigens (ATVA) have been identified. However, few of them have been investigated for their potential as ATV candidates. Reverse vaccinology (RV) can be leveraged to accelerate ATV discovery. It is cheap and shortens the lead time from ATVA discovery to vaccine production. This chapter provides a brief overview of recent advances in ATV development, ATVs, ATV effector mechanisms, and anti-tick RV. Additionally, it provides a detailed outline of vaccine antigen selection and analysis using computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikel SK (2018) Ticks and tick-borne infections: complex ecology, agents, and host interactions. Vet Sci 5:1–22

    Google Scholar 

  2. Lynen G, Zeman P, Bakuname C, Di Giulio G, Mtui P, Sanka P, Jongejan F (2008) Shifts in the distributional ranges of Boophilus ticks in Tanzania: evidence that a parapatric boundary between Boophilus microplus and B. decoloratus follows climate gradients. Exp Appl Acarol 44:147–164

    Article  PubMed  Google Scholar 

  3. Randolph SE (2010) To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Vet Parasitol 167:92–94

    Article  PubMed  Google Scholar 

  4. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14

    Article  PubMed  Google Scholar 

  5. Sambri V, Marangoni A, Storni E, Cavrini F, Moroni A, Sparacino M, Cevenini R (2004) Infezioni zoonosiche trasmesse da zecche: Aspetti clinici e diagnostici in medicina umana. Parassitologia 46:109–113

    CAS  PubMed  Google Scholar 

  6. Telmadarraiy Z, Chinikar S, Vatandoost H, Faghihi F, Hosseini-Chegeni A (2015) Vectors of Crimean Congo hemorrhagic fever virus in Iran. J Arthropod Borne Dis 9:137–147

    PubMed  PubMed Central  Google Scholar 

  7. Manjunathachar HV, Saravanan BC, Kesavan M, Karthik K, Rathod P, Gopi M, Tamilmahan P, Balaraju BL (2014) Economic importance of ticks and their effective control strategies. Asian Pac. J. Trop. Dis. 4:S770–S779

    Article  Google Scholar 

  8. Nuzzo JB, Meyer D, Snyder M, Ravi SJ, Lapascu A, Souleles J, Andrada CI, Bishai D (2019) What makes health systems resilient against infectious disease outbreaks and natural hazards? Results from a scoping review. BMC Public Health 19:1310

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chizyuka HG, Mulilo JB (1990) Methods currently used for the control of multi-host ticks: their validity and proposals for future control strategies. Parassitologia 32:127–132

    CAS  PubMed  Google Scholar 

  10. Jongejan F, Uilenberg G (1994) Ticks and control methods. Rev Sci Tech 13:1201–1226

    Article  CAS  PubMed  Google Scholar 

  11. Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA (2010) The natural history of Anaplasma marginale. Vet Parasitol 167:95–107

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh S, Azhahianambi P, Yadav MP (2007) Upcoming and future strategies of tick control: a review S. J Vector Borne Dis 44:79–89

    CAS  PubMed  Google Scholar 

  13. Dela FJ, Rodríguez M, JC G-GARÍ (2000) Immunological control of ticks through vaccination with Boophilus microplus gut antigens. Ann N Y Acad Sci 916:617–621

    Article  Google Scholar 

  14. De La Fuente J, Rodríguez M, Montero C et al (1999) Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac((TM)). Genet Anal 15:143–148

    Article  PubMed  Google Scholar 

  15. Canales M, Almazán C, Naranjo V, Jongejan F, de la Fuente J (2009) Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnol 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  16. De la Fuente J, Merino O (2013) Vaccinomics, the new road to tick vaccines. Vaccine 31:5923–5929

    Article  PubMed  Google Scholar 

  17. Valle MR, Guerrero FD (2018) Anti-tick vaccines in the omics era. Front Biosci 10:122–136

    Article  Google Scholar 

  18. De la Fuente J, Almazán C, Canales M, Pérez de la Lastra JM, Kocan KM, Willadsen P (2007) A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev 8:23–28

    Article  PubMed  Google Scholar 

  19. Rego ROM, Trentelman JJA, Anguita J et al (2019) Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 12:229

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rodríguez-Mallon A (2016) Developing anti-tick vaccines. In: Methods Mol. Biol. Humana Press Inc., Totowa, New Jersey, pp 243–259

    Google Scholar 

  21. Lew-Tabor AE, Rodriguez Valle M (2016) A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis 7:573–585

    Article  CAS  PubMed  Google Scholar 

  22. de la Fuente J, Kopáček P, Lew-Tabor A, Maritz-Olivier C (2016) Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol 38:754–769

    Article  PubMed  Google Scholar 

  23. Hardy S, Legagneux V, Audic Y, Paillard L (2010) Reverse genetics in eukaryotes. Biol Cell 102:561–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Willadsen P, Kemp DH (1988) Vaccination with “concealed” antigens for tick control. Parasitol Today 4:196–198

    Article  CAS  PubMed  Google Scholar 

  25. Allen JR, Humphreys SJ (1979) Immunisation of Guinea pigs and cattle against ticks [13]. Nature 280:491–493

    Article  CAS  PubMed  Google Scholar 

  26. De La Fuente J, Contreras M (2015) Tick vaccines: current status and future directions. Expert Rev Vaccines 14:1367–1376

    Article  PubMed  Google Scholar 

  27. Guerrero FD, Miller RJ, Pérez de León AA (2012) Cattle tick vaccines: many candidate antigens, but will a commercially viable product emerge? Int J Parasitol 42:421–427

    Article  CAS  PubMed  Google Scholar 

  28. Schetters T, Bishop R, Crampton M et al (2016) Cattle tick vaccine researchers join forces in CATVAC. Parasit Vectors 9:105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bhowmick B, Han Q (2020) Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Front Vet Sci 7:319

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsuda A, Mulenga A, Sugimoto C, Nakajima M, Ohashi K, Onuma M (2001) cDNA cloning, characterization and vaccine effect analysis of Haemaphysalis longicornis tick saliva proteins. Vaccine 19:4287–4296

    Article  CAS  PubMed  Google Scholar 

  31. Mulenga A, Sugimoto C, Sako Y, Ohashi K, Musoke A, Shubash M, Onuma M (1999) Molecular characterization of a Haemaphysalis longicornis tick salivary gland-associated 29-kilodalton protein and its effect as a vaccine against tick infestation in rabbits. Infect Immun 67:1652–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trimnell AR, Hails RS, Nuttall PA (2002) Dual action ectoparasite vaccine targeting “exposed” and “concealed” antigens. Vaccine 20:3560–3568

    Article  CAS  PubMed  Google Scholar 

  33. Campbell EM, Burdin M, Hoppler S, Bowman AS (2010) Role of an aquaporin in the sheep tick Ixodes ricinus: assessment as a potential control target. Int J Parasitol 40:15–23

    Article  CAS  PubMed  Google Scholar 

  34. Guerrero FD, Andreotti R, Bendele KG, Cunha RC, Miller RJ, Yeater K, De LeĂłn AAP (2014) Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations. Parasit Vectors 7:475

    PubMed  PubMed Central  Google Scholar 

  35. Ndekezi C, Nkamwesiga J, Ochwo S, Kimuda MP, Mwiine FN, Tweyongyere R, Amanyire W, Muhanguzi D (2019) Identification of ixodid tick-specific aquaporin-1 potential anti-tick vaccine epitopes: an in-silico analysis. Front Bioeng Biotechnol 7:236

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hajdusek O, Sojka D, Kopacek P, Buresova V, Franta Z, Sauman I, Winzerling J, Grubhoffer L (2009) Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc Natl Acad Sci U S A 106:1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hajdusek O, Almazán C, Loosova G, Villar M, Canales M, Grubhoffer L, Kopacek P, de la Fuente J (2010) Characterization of ferritin 2 for the control of tick infestations. Vaccine 28:2993–2998

    Article  CAS  PubMed  Google Scholar 

  38. Parizi LF, Utiumi KU, Imamura S, Onuma M, Ohashi K, Masuda A, da Silva VI (2011) Cross immunity with Haemaphysalis longicornis glutathione S-transferase reduces an experimental Rhipicephalus (Boophilus) microplus infestation. Exp Parasitol 127:113–118

    Article  CAS  PubMed  Google Scholar 

  39. Da Silva VI, Logullo C, Sorgine M, Velloso FF, Rosa De Lima MF, Gonzales JC, Masuda H, Oliveira PL, Masuda A (1998) Immunization of bovines with an aspartic proteinase precursor isolated from Boophilus microplus eggs. Vet Immunol Immunopathol 66:331–341

    Article  Google Scholar 

  40. Leal AT, Seixas A, Pohl PC, Ferreira CAS, Logullo C, Oliveira PL, Farias SE, Termignoni C, da Silva VI, Masuda A (2006) Vaccination of bovines with recombinant Boophilus yolk pro-Cathepsin. Vet Immunol Immunopathol 114:341–345

    Article  CAS  PubMed  Google Scholar 

  41. Seixas A, Oliveira P, Termignoni C, Logullo C, Masuda A, da Silva VI (2012) Rhipicephalus (Boophilus) microplus embryo proteins as target for tick vaccine. Vet Immunol Immunopathol 148:149–156

    Article  CAS  PubMed  Google Scholar 

  42. Seixas A, Leal AT, Nascimento-Silva MCL, Masuda A, Termignoni C, da Silva VI (2008) Vaccine potential of a tick vitellin-degrading enzyme (VTDCE). Vet Immunol Immunopathol 124:332–340

    Article  CAS  PubMed  Google Scholar 

  43. Parizi LF, Reck J, Oldiges DP, Guizzo MG, Seixas A, Logullo C, de Oliveira PL, Termignoni C, Martins JR, da Silva VI (2012) Multi-antigenic vaccine against the cattle tick Rhipicephalus (Boophilus) microplus: a field evaluation. Vaccine 30:6912–6917

    Article  CAS  PubMed  Google Scholar 

  44. Elvin CM, Kemp DH (1994) Generic approaches to obtaining efficacious antigens from vector arthropods. Int J Parasitol 24:67–79

    Article  CAS  PubMed  Google Scholar 

  45. Wikel SK (1996) Host immunity to ticks. Annu Rev Entomol 41:1–22

    Article  CAS  PubMed  Google Scholar 

  46. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ullmann AJ, Lima CMR, Guerrero FD, Piesman J, Black WC IV (2005) Genome size and organization in the blacklegged tick, Ixodes scapularis and the southern cattle tick, Boophilus microplus. Insect Mol Biol 14:217–222

    Article  CAS  PubMed  Google Scholar 

  48. Gulia-Nuss M, Nuss AB, Meyer JM et al (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 7:10507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Perner J, Kropáčková S, Kopáček P, Ribeiro JMC (2018) Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Negl Trop Dis 12:e0006410

    Article  PubMed  PubMed Central  Google Scholar 

  50. Anderson JM, Sonenshine DE, Valenzuela JG (2008) Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics 9:552

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins Struct Funct Genet 64:643–651

    Article  CAS  PubMed  Google Scholar 

  52. Yu CS, Cheng CW, Su WC, Chang KC, Huang SW, Hwang JK, Lu CH (2014) CELLO2GO: a web server for protein subCELlular lOcalization prediction with functional gene ontology annotation. PLoS One 9:e99368

    Article  PubMed  PubMed Central  Google Scholar 

  53. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shafee T, Cooke I (2016) AlignStat: a web-tool and R package for statistical comparison of alternative multiple sequence alignments. BMC Bioinformatics 17:434

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME S UITE : tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  Google Scholar 

  56. Chowell D, Krishna S, Becker PD, Cocita C, Shu J, Tan X, Greenberg PD, Klavinskis LS, Blattman JN, Anderson KS (2015) TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. Proc Natl Acad Sci U S A 112:E1754–E1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Singh H, Raghava GPS (2002) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237

    Article  Google Scholar 

  58. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Muhanguzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muhanguzi, D. et al. (2022). Anti-Tick Vaccines: Current Advances and Future Prospects. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2411. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1888-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1888-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1887-5

  • Online ISBN: 978-1-0716-1888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics