Skip to main content

Generation of Rat Neural Stem Cells to Produce Different Astrocyte Phenotypes

  • Protocol
  • First Online:
Stem Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2429))

Abstract

Striatum-derived neural stem cells have been used to generate a variety of neural cell populations. They are composed of free-floating clusters of clonal neural stem cells, termed neurospheres, and can be expanded under growth factor stimulation in vitro. The multipotent nature of neurospheres means that under certain growth conditions they can differentiate into neuronal and glial progenitors of the central nervous system (CNS).

Here, we describe a method for creating a population of astrocytes derived from rat striatum neurospheres, which in turn can be used to generate astrocytes with different reactivity phenotypes. Several methods and techniques are already available for the generation of neurospheres, but the method detailed herein provides an accessible, reproducible protocol for large numbers of astrocyte cultures, that can then be manipulated in an experimental format for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ullian EM, Sapperstein SK, Christopherson KS et al (2001) Control of synapse number by glia. Science 291:657–661

    Article  CAS  Google Scholar 

  2. Liberto CM, Albrecht PJ, Herx LM et al (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  CAS  Google Scholar 

  3. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  Google Scholar 

  4. Pellerin L (2005) How astrocytes feed hungry neurons. Mol Neurobiol 32:59–72

    Article  CAS  Google Scholar 

  5. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65:2702–2720

    Article  CAS  Google Scholar 

  6. Sorensen A, Moffat K, Thomson C et al (2008) Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axons in vitro. Glia 56:750–763

    Article  Google Scholar 

  7. Watkins TA, Emery B, Mulinyawe S et al (2008) Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60:555–569

    Article  CAS  Google Scholar 

  8. Zamanian JL, Xu L, Foo LC et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  Google Scholar 

  9. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967

    Article  CAS  Google Scholar 

  10. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    Article  CAS  Google Scholar 

  11. Oberheim NA, Takano T, Han X et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  Google Scholar 

  12. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  Google Scholar 

  13. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  Google Scholar 

  14. Anderson MA, Burda JE, Ren Y et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  Google Scholar 

  15. Faulkner JR, Herrmann JE, Woo MJ et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  Google Scholar 

  16. Holley JE, Gveric D, Whatmore JL et al (2005) Tenascin C induces a quiescent phenotype in cultured adult human astrocytes. Glia 52:53–58

    Article  Google Scholar 

  17. Nash B, Thomson CE, Linington C et al (2011) Functional duality of astrocytes in myelination. J Neurosci Off J Soc Neurosci 31:13028–13038

    Article  CAS  Google Scholar 

  18. Nash B, Ioannidou K, Barnett SC (2011) Astrocyte phenotypes and their relationship to myelination. J Anat 219:44–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Barnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, R.S., Barnett, S.C., Lindsay, S.L. (2022). Generation of Rat Neural Stem Cells to Produce Different Astrocyte Phenotypes. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics