Skip to main content

A TXTL-Based Assay to Rapidly Identify PAMs for CRISPR-Cas Systems with Multi-Protein Effector Complexes

  • Protocol
  • First Online:
Book cover Cell-Free Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

Abstract

Type I CRISPR-Cas systems represent the most common and diverse type of these prokaryotic defense systems and are being harnessed for a growing set of applications. As these systems rely on multi-protein effector complexes, their characterization remains challenging. Here, we report a rapid and straightforward method to characterize these systems in a cell-free transcription-translation (TXTL) system. A ribonucleoprotein complex is produced and binds to its target next to a recognized PAM, thereby preventing the targeted sequence from being cleaved by a restriction enzyme. Selection for uncleaved targeted plasmids leads to an enrichment of recognized sequences within a PAM library. This assay will aid the exploration of CRISPR-Cas diversity and evolution and help contribute new systems for CRISPR technologies and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  2. Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266

    Article  CAS  PubMed  Google Scholar 

  3. Heler R, Marraffini LA, Bikard D (2014) Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol Microbiol 93:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yosef I, Shitrit D, Goren MG et al (2013) DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array. Proc Natl Acad Sci U S A 110:14396–14401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Li J, Zhao H et al (2015) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163:840–853

    Article  CAS  PubMed  Google Scholar 

  6. Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leenay RT, Beisel CL (2017) Deciphering, communicating, and engineering the CRISPR PAM. J Mol Biol 429:177–191

    Article  CAS  PubMed  Google Scholar 

  8. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  PubMed  Google Scholar 

  10. Brouns SJJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Westra ER, van Erp PBG, Künne T et al (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Csörgő B, León LM, Chau-Ly IJ et al (2020) A compact Cascade-Cas3 system for targeted genome engineering. Nat Methods 17:1183–1190

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Liu J, Zhi S et al (2020) Repurposing type I–F CRISPR–Cas system as a transcriptional activation tool in human cells. Nat Commun 11:1–14

    Google Scholar 

  14. Dolan AE, Hou Z, Xiao Y et al (2019) Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol Cell 74:936–950.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu Z, Li M, Li Y et al (2019) Native CRISPR-Cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa. Cell Rep 29:1707–1717.e3

    Article  CAS  PubMed  Google Scholar 

  16. Luo ML, Mullis AS, Leenay RT, Beisel CL (2015) Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 43:674–681

    Article  CAS  PubMed  Google Scholar 

  17. Hidalgo-Cantabrana C, Barrangou R (2020) Characterization and applications of Type I CRISPR-Cas systems. Biochem Soc Trans 48:15–23

    Article  CAS  PubMed  Google Scholar 

  18. Morisaka H, Yoshimi K, Okuzaki Y et al (2019) CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 10:5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng F, Gong L, Zhao D et al (2017) Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon. J Genet Genomics 44:541–548

    Article  PubMed  Google Scholar 

  20. Li Y, Pan S, Zhang Y et al (2016) Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res 44:e34

    Article  PubMed  Google Scholar 

  21. Cameron P, Coons MM, Klompe SE et al (2019) Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nat Biotechnol 37:1471–1477

    Article  CAS  PubMed  Google Scholar 

  22. Pickar-Oliver A, Black JB, Lewis MM et al (2019) Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells. Nat Biotechnol 37:1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pyne ME, Bruder MR, Moo-Young M et al (2016) Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep 6:25666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hidalgo-Cantabrana C, Goh YJ, Pan M et al (2019) Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proc Natl Acad Sci U S A 116:15774–15783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng Y, Han J, Wang B et al (2019) Characterization and repurposing of the endogenous type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering. Nucleic Acids Res 47:11461–11475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rath D, Amlinger L, Hoekzema M et al (2015) Efficient programmable gene silencing by Cascade. Nucleic Acids Res 43:237–246

    Article  CAS  PubMed  Google Scholar 

  27. Gomaa AA, Klumpe HE, Luo ML et al (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5:e00928–e00913

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yosef I, Manor M, Kiro R, Qimron U (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 112:7267–7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silverman AD, Karim AS, Jewett MC (2020) Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 21:151–170

    Article  CAS  PubMed  Google Scholar 

  30. Liao C, Ttofali F, Slotkowski RA et al (2019) Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat Commun 10:2948

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liao C, Slotkowski RA, Achmedov T, Beisel CL (2019) The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays. RNA Biol 16:404–412

    Article  PubMed  Google Scholar 

  32. Marshall R, Beisel CL, Noireaux V (2020) Rapid testing of CRISPR nucleases and guide RNAs in an E. coli cell-free transcription-translation system. STAR Protocols 1:100003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marshall R, Maxwell CS, Collins SP et al (2018) Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. Mol Cell 69:146–157.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432

    Article  CAS  PubMed  Google Scholar 

  35. Davidson AR, Lu W-T, Stanley SY et al (2020) Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu Rev Biochem 89:309–332

    Article  CAS  PubMed  Google Scholar 

  36. Wandera KG, Collins SP, Wimmer F et al (2020) An enhanced assay to characterize anti-CRISPR proteins using a cell-free transcription-translation system. Methods 172:42–50

    Article  CAS  PubMed  Google Scholar 

  37. Watters KE, Fellmann C, Bai HB et al (2018) Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362:236–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Collias D, Beisel CL (2021) CRISPR technologies and the search for the PAM-free nuclease. Nat Commun 12:555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maxwell CS, Jacobsen T, Marshall R et al (2018) A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Methods 143:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leenay RT, Maksimchuk KR, Slotkowski RA et al (2016) Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell 62:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sitaraman K, Esposito D, Klarmann G et al (2004) A novel cell-free protein synthesis system. J Biotechnol 110:257–263

    Article  CAS  PubMed  Google Scholar 

  42. Marshall R, Maxwell CS, Collins SP et al (2017) Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems. Biotechnol Bioeng 114:2137–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shin J, Noireaux V (2010) Efficient cell-free expression with the endogenous E. coli RNA polymerase and sigma factor 70. J Biol Eng 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Collias D, Leenay RT, Slotkowski RA et al (2020) A positive, growth-based PAM screen identifies noncanonical motifs recognized by the S. pyogenes Cas9. Sci Adv 6:eabb4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wimmer F, Mougiakos I, Englert F, Beisel CL (2021) Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. bioRxiv 2021.10.18.464778; doi: https://doi.org/10.1101/2021.10.18.464778

    Google Scholar 

Download references

Acknowledgments

This work was supported by the SPP 2141 priority program of the Deutsche Forschungsgemeinschaft (BE 6703/1-1 to C.L.B.). A portion of this research was performed under the JGI-EMSL Collaborative Science Initiative and used resources at the DOE Joint Genome Institute and the Environmental Molecular Science Laboratory, which are DOE Office of Science User Facilities. Both facilities are sponsored by the Office of Biological and Environmental Research and operated under Contract Nos. DE-AC02-05CH11231 (JGI) and DE-AC05-76RL01830 (EMSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chase L. Beisel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wimmer, F., Englert, F., Beisel, C.L. (2022). A TXTL-Based Assay to Rapidly Identify PAMs for CRISPR-Cas Systems with Multi-Protein Effector Complexes. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics