Skip to main content

Introducing 77Se NMR Spectroscopy to Analyzing Galectin –Ligand Interaction

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2442))

Abstract

Their emerging nature as multifunctional effectors explains the large interest to monitor glycan binding to galectins and to define bound-state conformer(s) of their ligands in solution. Basically, NMR spectroscopy facilitates respective experiments. Towards developing new and even better approaches for these purposes, extending the range of exploitable isotopes beyond 1H, 13C, and 15N offers promising perspectives. Having therefore prepared selenodigalactoside and revealed its bioactivity as galectin ligand, monitoring of its binding by 77Se NMR spectroscopy at a practical level becomes possible by setting up a 2D 1H, 77Se CPMG-HSQBMC experiment including CPMG-INEPT long-range transfer. This first step into applying 77Se as sensor for galectin binding substantiates its potential for screening relative to inhibitory potencies in compound mixtures and for achieving sophisticated epitope mapping. The documented strategic combination of synthetic carbohydrate chemistry and NMR spectroscopy prompts to envision to work with isotopically pure 77Se-containing β-galactosides and to build on the gained experience with 77Se by adding 19F as second sensor in doubly labeled glycosides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roseman S (2001) Reflections on glycobiology. J Biol Chem 276(45):41527–41542. https://doi.org/10.1074/jbc.R100053200

    Article  CAS  PubMed  Google Scholar 

  2. Roth J (1987) Subcellular organization of glycosylation in mammalian cells. Biochim Biophys Acta 906(3):405–436. https://doi.org/10.1016/0304-4157(87)90018-9

    Article  CAS  PubMed  Google Scholar 

  3. Corfield AP (2017) Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2):119–147. https://doi.org/10.1007/s00418-016-1526-4

    Article  CAS  PubMed  Google Scholar 

  4. Kopitz J (2017) Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2):175–198. https://doi.org/10.1007/s00418-016-1518-4

    Article  CAS  PubMed  Google Scholar 

  5. Hart GW (2013) Thematic minireview series on glycobiology and extracellular matrices: glycan functions pervade biology at all levels. J Biol Chem 288(10):6903. https://doi.org/10.1074/jbc.R113.453977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gabius H-J, Roth J (2017) An introduction to the sugar code. Histochem Cell Biol 147(2):111–117. https://doi.org/10.1007/s00418-016-1521-9

    Article  CAS  PubMed  Google Scholar 

  7. Cummings RD (2019) Stuck on sugars: how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj J 36(4):241–257. https://doi.org/10.1007/s10719-019-09876-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaltner H, Abad-Rodríguez J, Corfield AP, Kopitz J, Gabius H-J (2019) The sugar code: letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing. Biochem J 476(18):2623–2655. https://doi.org/10.1042/BCJ20170853

    Article  CAS  PubMed  Google Scholar 

  9. Boyd WC, Shapleigh E (1954) Specific precipitating activity of plant agglutinins (lectins). Science 119(3091):419. https://doi.org/10.1126/science.119.3091.419

    Article  CAS  PubMed  Google Scholar 

  10. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98(2):637–674. https://doi.org/10.1021/cr940413g

    Article  CAS  PubMed  Google Scholar 

  11. Manning JC, Romero A, Habermann FA, García Caballero G, Kaltner H, Gabius H-J (2017) Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2):199–222. https://doi.org/10.1007/s00418-016-1524-6

    Article  CAS  PubMed  Google Scholar 

  12. Kaltner H, García Caballero G, Ludwig A-K, Manning JC, Gabius H-J (2018) From glycophenotyping by (plant) lectin histochemistry to defining functionality of glycans by pairing with endogenous lectins. Histochem Cell Biol 149(6):547–568. https://doi.org/10.1007/s00418-018-1676-7

    Article  CAS  PubMed  Google Scholar 

  13. Barondes SH (1984) Soluble lectins: a new class of extracellular proteins. Science 223(4642):1259–1264. https://doi.org/10.1126/science.6367039

    Article  CAS  PubMed  Google Scholar 

  14. Cooper DNW (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572(2–3):209–231. https://doi.org/10.1016/s0304-4165(02)00310-0

    Article  CAS  PubMed  Google Scholar 

  15. Arthur CM, Baruffi MD, Cummings RD, Stowell SR (2015) Evolving mechanistic insights into galectin functions. Methods Mol Biol 1207:1–35. https://doi.org/10.1007/978-1-4939-1396-1_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaltner H, Toegel S, García Caballero G, Manning JC, Ledeen RW, Gabius H-J (2017) Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 147(2):239–256. https://doi.org/10.1007/s00418-016-1522-8

    Article  CAS  PubMed  Google Scholar 

  17. Kasai K-i (2018) Galectins: quadruple-faced proteins. Trends Glycosci Glycotechnol 30(172):SE221–SE223. https://doi.org/10.4052/tigg.1745.7SE

    Article  Google Scholar 

  18. García Caballero G, Kaltner H, Kutzner TJ, Ludwig A-K, Manning JC, Schmidt S, Sinowatz F, Gabius H-J (2020) How galectins have become multifunctional proteins. Histol Histopathol 35(6):509–539. https://doi.org/10.14670/HH-18-199

    Article  PubMed  Google Scholar 

  19. Kamitori S (2018) Three-dimensional structures of galectins. Trends Glycosci Glycotechnol 30(172):SE41–SE50. https://doi.org/10.4052/tigg.1731.1SE

    Article  Google Scholar 

  20. Romero A, Gabius H-J (2019) Galectin-3: is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opin Ther Targets 23(10):819–828. https://doi.org/10.1080/14728222.2019.1675638

    Article  CAS  PubMed  Google Scholar 

  21. Ford MG, Weimar T, Köhli T, Woods RJ (2003) Molecular dynamics simulations of galectin-1-oligosaccharide complexes reveal the molecular basis for ligand diversity. Proteins 53(2):229–240. https://doi.org/10.1002/prot.10428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arthur CM, Cataldi Rodrigues L, Dias Baruffi M, Sullivan HC, Heimburg-Molinaro J, Smith DF, Cummings RD, Stowell SR (2015) Examining galectin binding specificity using glycan microarrays. Methods Mol Biol 1207:115–131. https://doi.org/10.1007/978-1-4939-1396-1_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR (2016) Key regulators of galectin-glycan interactions. Proteomics 16(24):3111–3125. https://doi.org/10.1002/pmic.201600116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwaki J, Hirabayashi J (2018) Carbohydrate-binding specificity of human galectins: an overview by frontal affinity chromatography. Trends Glycosci Glycotechnol 30(172):SE137–SE153. https://doi.org/10.4052/tigg.1728.1SE

    Article  Google Scholar 

  25. Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A β-d-galactoside-binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72(w4):1383–1387. https://doi.org/10.1073/pnas.72.4.1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sindrewicz P, Li X, Yates EA, Turnbull JE, Lian LY, Yu LG (2019) Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions. Sci Rep 9(1):11851. https://doi.org/10.1038/s41598-019-47658-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K Jr, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 1850(1):186–235. https://doi.org/10.1016/j.bbagen.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  28. Eckardt V, Miller MC, Blanchet X, Duan R, Leberzammer J, Duchene J, Soehnlein O, Megens RT, Ludwig A-K, Dregni A, Faussner A, Wichapong K, Ippel H, Dijkgraaf I, Kaltner H, Doring Y, Bidzhekov K, Hackeng TM, Weber C, Gabius H-J, von Hundelshausen P, Mayo KH (2020) Chemokines and galectins form heterodimers to modulate inflammation. EMBO Rep 21(4):e47852. https://doi.org/10.15252/embr.201947852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller MC, Nesmelova IV, Daragan VA, Ippel H, Michalak M, Dregni A, Kaltner H, Kopitz J, Gabius H-J, Mayo KH (2020) Pro4 prolyl peptide bond isomerization in human galectin-7 modulates the monomer-dimer equilibrum to affect function. Biochem J 477(17):3147–3165. https://doi.org/10.1042/BCJ20200499

    Article  CAS  PubMed  Google Scholar 

  30. Strino F, Lii JH, Gabius H-J, Nyholm PG (2009) Conformational analysis of thioglycoside derivatives of histo-blood group ABH antigens using an ab initio-derived reparameterization of MM4: implications for design of non-hydrolysable mimetics. J Comput Aided Mol Des 23(12):845–852. https://doi.org/10.1007/s10822-009-9301-4

    Article  CAS  PubMed  Google Scholar 

  31. Strino F, Lii JH, Koppisetty CA, Nyholm PG, Gabius H-J (2010) Selenoglycosides in silico: ab initio-derived reparameterization of MM4, conformational analysis using histo-blood group ABH antigens and lectin docking as indication for potential of bioactivity. J Comput Aided Mol Des 24(12):1009–1021. https://doi.org/10.1007/s10822-010-9392-y

    Article  CAS  PubMed  Google Scholar 

  32. André S, Kövér KE, Gabius H-J, Szilágyi L (2015) Thio- and selenoglycosides as ligands for biomedically relevant lectins: valency-activity correlations for benzene-based dithiogalactoside clusters and first assessment for (di)selenodigalactosides. Bioorg Med Chem Lett 25(4):931–935. https://doi.org/10.1016/j.bmcl.2014.12.049

    Article  CAS  PubMed  Google Scholar 

  33. Kaltner H, Szabo T, Fehér K, André S, Balla S, Manning JC, Szilágyi L, Gabius H-J (2017) Bivalent O-glycoside mimetics with S/disulfide/Se substitutions and aromatic core: synthesis, molecular modeling and inhibitory activity on biomedically relevant lectins in assays of increasing physiological relevance. Bioorg Med Chem 25(12):3158–3170. https://doi.org/10.1016/j.bmc.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  34. Williamsson RT, Márquez BL, Gerwick WH, Kövér KE (2000) One-and two-dimensional gradient-selected HSQMBC NMR experiments for the efficient analysis of long-range heteronuclear coupling constants. Magn Reson Chem 28(4):265–273. https://doi.org/10.1002/(SICI)1097-458x

    Article  Google Scholar 

  35. Boros S, Kövér KE (2011) Low-power composite CPMG HSQMBC experiment for accurate measurement of long-range heteronuclear coupling constants. Magn Reson Chem 49(3):106–110. https://doi.org/10.1002/mrc.2717

    Article  CAS  PubMed  Google Scholar 

  36. Timári I, Illyes TZ, Adams RW, Nilsson M, Szilágyi L, Morris GA, Kövér KE (2015) Precise measurement of long-range heteronuclear coupling constants by a novel broadband proton-proton-decoupled CPMG-HSQMBC method. Chem Eur J 21(8):3472–3479. https://doi.org/10.1002/chem.201405535

    Article  CAS  PubMed  Google Scholar 

  37. Timári I, Kövér KE (2018) Broadband homonuclear decoupled HSQMBC methods. Magn Reson Chem 56(10):910–917. https://doi.org/10.1002/mrc.4700

    Article  CAS  PubMed  Google Scholar 

  38. Koskela H, Kolpelainen I, Halkkinen S (2003) LR-CAHSQC: an application of a Carr-Purcell-Meiboom-Gill-type sequence to heteronuclear multiple bond correlation spectroscopy. J Magn Reson 164(2):228–232. https://doi.org/10.1016/s1090-7807(03)00250-7

    Article  CAS  PubMed  Google Scholar 

  39. Kövér KE, Batta G, Fehér K (2006) Accurate measurement of long-range heteronuclear coupling constants from undistorted multiplets of an enhanced CPMG-HSQMBC experiment. J Magn Reson 181(1):89–97. https://doi.org/10.1016/j.jmr.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  40. Raics M, Timári I, Diercks T, Szilágyi L, Gabius H-J, Kövér KE (2019) Selenoglycosides as lectin ligands: 77Se-edited CPMG-HSQMBC NMR to monitor biomedically relevant interactions. ChemBioChem 20(13):1688–1692. https://doi.org/10.1002/cbic.201900088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Solís D, Romero A, Kaltner H, Gabius H-J, Díaz-Mauriño T (1996) Different architecture of the combining sites of two chicken galectins revealed by chemical-mapping studies with synthetic ligand derivatives. J Biol Chem 271(22):12744–12748. https://doi.org/10.1074/jbc.271.22.12744

    Article  PubMed  Google Scholar 

  42. Diercks T, Infantino AS, Unione L, Jiménez-Barbero J, Oscarson S, Gabius H-J (2018) Fluorinated carbohydrates as lectin ligands: synthesis of OH/F-substituted N-glycan core trimannoside and epitope mapping by 2D STD-TOCSYreF NMR spectroscopy. Chem Eur J 24(59):15761–15765. https://doi.org/10.1002/chem.201803217

    Article  CAS  PubMed  Google Scholar 

  43. Wagner G, Nuhn P (1964) Synthese von Selenoglykosiden mit acetyl-glykosyl-isoselenuronium-bromiden. 4. Mitt. über “Selenoglykoside”. Arch Pharm 297(8):461–473. https://doi.org/10.1002/ardp.19642970804

    Article  CAS  Google Scholar 

  44. Schneider W, Wrede F (1917) Synthese eines schwefelhaltigen und eines selenhaltigen disaccharides. Ber Dtsch Chem Ges 50(1):793–804. https://doi.org/10.1002/cber.191705001131

    Article  CAS  Google Scholar 

  45. Pervushin K, Gallius V, Ritter C (2001) Improved TROSY-HNCA experiment with suppression of conformational exchange induced relaxation. J Biomol NMR 21(2):161–166. https://doi.org/10.1023/a:1012484027195

    Article  CAS  PubMed  Google Scholar 

  46. Zhuravleva A, Orekhov VY (2008) Divided evolution: a scheme for suppression of line broadening induced by conformational exchange. J Am Chem Soc 130(11):3260–3261. https://doi.org/10.1021/ja710056t

    Article  CAS  PubMed  Google Scholar 

  47. Illyés T-Z, Balla S, Bényei A, Kumar AA, Timári I, Kövér KE, Szilágyi L (2016) Exploring the synthesis of novel glycomimetics. Carbohydrate derivatives with Se-S- or Se-Se-glycosidic linkages. ChemistrySelect 1(10):2383–2388. https://doi.org/10.1002/slct.201600628

    Article  CAS  Google Scholar 

  48. Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128(8):2571–2576. https://doi.org/10.1021/ja055336t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research, Development and Innovation Office of Hungary (grant numbers: NKFI/OTKA NN 128368) (to M.R., L.Sz., and K.E.K.) and NKFI/OTKA PD 135034 (to I.T.)) and co-financed by the European Regional Development Fund (project GINOP-2.3.2-15-2016-00044). I.T. acknowledges the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (BO/00372/20/7). L.Sz. is indebted to Sára Balla for excellent help in organic syntheses, to Lajos Nagy for MS spectra and to Attila Kiss for optical rotation data (all in the Department of Chemistry, Faculty of Science & Technology, University of Debrecen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans-Joachim Gabius or Katalin E. Kövér .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Raics, M., Timári, I., Szilágyi, L., Gabius, HJ., Kövér, K.E. (2022). Introducing 77Se NMR Spectroscopy to Analyzing Galectin –Ligand Interaction. In: Stowell, S.R., Arthur, C.M., Cummings, R.D. (eds) Galectins. Methods in Molecular Biology, vol 2442. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2055-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2055-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2054-0

  • Online ISBN: 978-1-0716-2055-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics