Skip to main content

Negative-Selection Enrichment of Circulating Tumor Cells from Peripheral Blood Using the Microfluidic CTC-iChip

  • Protocol
  • First Online:
Mammary Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2471))

Abstract

The ability to isolate and analyze rare circulating tumor cells (CTCs) holds the potential to increase our understanding of cancer evolution and allows monitoring of disease and therapeutic responses through a relatively non-invasive blood-based biopsy. While many methods have been described to isolate CTCs from the blood, the vast majority rely on size-based sorting or positive selection of CTCs based on surface markers, which introduces bias into the downstream product by making assumptions about these heterogenous cells. Here we describe a negative-selection protocol for enrichment of CTCs through removal of blood components including red blood cells, platelets, and white blood cells. This procedure results in a product that is amenable to downstream single-cell analytics including RNA-Seq, ATAC-Seq and DNA methylation, droplet digital PCR (ddPCR) for tumor specific transcripts, staining and extensive image analysis, and ex vivo culture of patient-derived CTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904. https://doi.org/10.1038/nm1469

    Article  CAS  PubMed  Google Scholar 

  2. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. https://doi.org/10.1038/nature06385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691. https://doi.org/10.1016/j.cell.2016.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maheswaran S, Haber DA (2010) Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev 20(1):96–99. https://doi.org/10.1016/j.gde.2009.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sundaresan TK, Haber DA (2015) Fantastic voyage: the future of cancer diagnostics. Lancet Oncol 16(16):1596–1598. https://doi.org/10.1016/S1470-2045(15)00469-6

    Article  PubMed  Google Scholar 

  6. Zheng Y, Miyamoto DT, Wittner BS, Sullivan JP, Aceto N, Jordan NV, Yu M, Karabacak NM, Comaills V, Morris R, Desai R, Desai N, Emmons E, Milner JD, Lee RJ, Wu CL, Sequist LV, Haas W, Ting DT, Toner M, Ramaswamy S, Maheswaran S, Haber DA (2017) Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat Commun 8:1–12. https://doi.org/10.1038/ncomms14344

    Article  CAS  Google Scholar 

  7. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC et al (2014) Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193):216–220. https://doi.org/10.1126/science.1253533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E, Schumacher U, Costes V, Maudelonde T, Pantel K, Alix-Panabières C (2015) Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res 75(5):892–901. https://doi.org/10.1158/0008-5472.CAN-14-2613

    Article  CAS  PubMed  Google Scholar 

  9. Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, Desai R, Fox DB, Brannigan BW, Trautwein J, Arora KS, Desai N, Dahl DM, Sequist LV, Smith MR, Kapur R, Wu CL, Shioda T, Ramaswamy S, Ting DT, Toner M, Maheswaran S, Haber DA (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349(6254):1351–1356. https://doi.org/10.1126/science.aab0917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW, Xega K, Ciciliano JC, Zhu H, MacKenzie OC, Trautwein J, Arora KS, Shahid M, Ellis HL, Qu N, Bardeesy N, Rivera MN, Deshpande V, Ferrone CR, Kapur R, Ramaswamy S, Shioda T, Toner M, Maheswaran S, Haber DA (2014) Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8(6):1905–1918. https://doi.org/10.1016/j.celrep.2014.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sundaresan TK, Sequist LV, Heymach JV, Riely GJ, Jänne PA, Koch WH, Sullivan JP, Fox DB, Maher R, Muzikansky A, Webb A, Tran HT, Giri U, Fleisher M, Yu HA, Wei W, Johnson BE, Barber TA, Walsh JR, Engelman JA, Stott SL, Kapur R, Maheswaran S, Toner M, Haber DA (2016) Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res 22(5):1103–1110. https://doi.org/10.1158/1078-0432.CCR-15-1031

    Article  CAS  PubMed  Google Scholar 

  12. Miyamoto DT, Lee RJ, Stott SL, Ting DT, Wittner BS, Ulman M et al (2012) Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov 2(11):995–1003. https://doi.org/10.1158/2159-8290.CD-12-0222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng Y, Zhang Y, Sun S, Wang Z, Wang M, Yu B et al (2014) An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci Rep 4:13–15. https://doi.org/10.1038/srep07499

    Article  CAS  Google Scholar 

  14. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S et al (2016) Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 7(18):26107–26119. https://doi.org/10.18632/oncotarget.8431

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen JF, Ho H, Lichterman J, Lu YT, Zhang Y, Garcia MA et al (2015) Subclassification of prostate cancer circulating tumor cells by nuclear size reveals very small nuclear circulating tumor cells in patients with visceral metastases. Cancer 121(18):3240–3251. https://doi.org/10.1002/cncr.29455

    Article  PubMed  Google Scholar 

  16. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G et al (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7(5):e33788. https://doi.org/10.1371/journal.pone.0033788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y et al (2016) HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537(7618):102–106. https://doi.org/10.1038/nature19328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fehm T, Muller V, Aktas B, Janni W, Schneeweiss A, Stickeler E et al (2010) HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat 124(2):403–412. https://doi.org/10.1007/s10549-010-1163-x

    Article  CAS  PubMed  Google Scholar 

  19. Lindstrom LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK et al (2012) Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol 30(21):2601–2608. https://doi.org/10.1200/JCO.2011.37.2482

    Article  PubMed  Google Scholar 

  20. Miyamoto DT, Lee RJ, Kalinich M, LiCausi JA, Zheng Y, Chen T et al (2018) An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer. Cancer Discov 8(3):288–303. https://doi.org/10.1158/2159-8290.CD-16-1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kwan TT, Bardia A, Spring LM, Giobbie-Hurder A, Kalinich M, Dubash T et al (2018) A digital rna signature of circulating tumor cells predicting early therapeutic response in localized and metastatic breast cancer. Cancer Discov 8(10):1286. https://doi.org/10.1158/2159-8290.CD-18-0432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalinich M, Bhan I, Kwan TT, Miyamoto DT, Javaid S, LiCausi JA et al (2017) An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc Natl Acad Sci U S A 114(5):1123–1128. https://doi.org/10.1073/pnas.1617032114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hong X, Sullivan RJ, Kalinich M, Kwan TT, Giobbie-Hurder A, Pan S et al (2018) Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy. Proc Natl Acad Sci U S A 115(10):2467–2472. https://doi.org/10.1073/pnas.1719264115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T et al (2013) Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS One 8(6):e67466. https://doi.org/10.1371/journal.pone.0067466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim TH, Lim M, Park J, Oh JM, Kim H, Jeong H et al (2017) FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid-liquid interface. Anal Chem 89(2):1155–1162. https://doi.org/10.1021/acs.analchem.6b03534

    Article  CAS  PubMed  Google Scholar 

  26. Kim YJ, Kang YT, Cho YH (2016) Poly(ethylene glycol)-modified tapered-slit membrane filter for efficient release of captured viable circulating tumor cells. Anal Chem 88(16):7938–7945. https://doi.org/10.1021/acs.analchem.5b04927

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi M, Zhu P, McCarty G, Meyer CF, Pratilas CA, Levin A et al (2017) Size-based detection of sarcoma circulating tumor cells and cell clusters. Oncotarget 8(45):78965–78977. https://doi.org/10.18632/oncotarget.20697

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim MS, Sim TS, Kim YJ, Kim SS, Jeong H, Park JM et al (2012) SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Lab Chip 12(16):2874–2880. https://doi.org/10.1039/c2lc40065k

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, Phelps R et al (2002) Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry 49(4):150–158. https://doi.org/10.1002/cyto.10161

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZP, Eisenberger MA, Carducci MA, Partin AW, Scher HI, Ts’o PO (2000) Identification and characterization of circulating prostate carcinoma cells. Cancer 88(12):2787–2795. https://doi.org/10.1002/1097-0142(20000615)88:12<2787::AID-CNCR18>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  31. Friedlander TW, Premasekharan G, Paris PL (2014) Looking back, to the future of circulating tumor cells. Pharmacol Ther 142(3):271–280. https://doi.org/10.1016/j.pharmthera.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  32. Gogoi P, Sepehri S, Zhou Y, Gorin MA, Paolillo C, Capoluongo E et al (2016) Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples. PLoS One 11(1):e0147400. https://doi.org/10.1371/journal.pone.0147400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim J, Cho H, Han SI, Han KH (2016) Single-cell isolation of circulating tumor cells from whole blood by lateral magnetophoretic microseparation and microfluidic dispensing. Anal Chem 88(9):4857–4863. https://doi.org/10.1021/acs.analchem.6b00570

    Article  CAS  PubMed  Google Scholar 

  34. Satelli A, Brownlee Z, Mitra A, Meng QH, Li S (2015) Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule-and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem 61(1):259–266. https://doi.org/10.1373/clinchem.2014.228122

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Peng M, Li N, Song Q, Yao Y, Xu B et al (2018) Combined use of EpCAM and FRα enables the high-efficiency capture of circulating tumor cells in non-small cell lung cancer. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-19391-1

    Article  CAS  Google Scholar 

  36. Krivacic RT, Ladanyi A, Curry DN, Hsieh HB, Kuhn P, Bergsrud DE et al (2004) A rare-cell detector for cancer. Proc Natl Acad Sci U S A 101(29):10501–10504. https://doi.org/10.1073/pnas.0404036101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107(43):18392–18397. https://doi.org/10.1073/pnas.1012539107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu S, Liu S, Liu Z, Huang J, Pu X, Li J et al (2015) Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLoS One 10(4):1–14. https://doi.org/10.1371/journal.pone.0123976

    Article  CAS  Google Scholar 

  39. Magbanua MJM, Carey LA, DeLuca A, Hwang J, Scott JH, Rimawi MF et al (2015) Circulating tumor cell analysis in metastatic triple-negative breast cancers. Clin Cancer Res 21(5):1098–1105. https://doi.org/10.1158/1078-0432.CCR-14-1948

    Article  CAS  PubMed  Google Scholar 

  40. Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A et al (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178(3):989–996. https://doi.org/10.1016/j.ajpath.2010.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ge F, Zhang H, Wang DD, Li L, Lin PP (2015) Enhanced detection and comprehensive in situ phenotypic characterization of circulating and disseminated heteroploid epithelial and glioma tumor cells. Oncotarget 6(29):27049–27064. https://doi.org/10.18632/oncotarget.4819

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D et al (2012) Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9(1):016001. https://doi.org/10.1088/1478-3975/9/1/016001

    Article  PubMed  PubMed Central  Google Scholar 

  43. Murlidhar V, Zeinali M, Grabauskiene S, Ghannad-Rezaie M, Wicha MS, Simeone DM et al (2014) A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small 10(23):4895–4904. https://doi.org/10.1002/smll.201400719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao M, Wei B, Chiu DT (2013) Imaging multiple biomarkers in captured rare cells by sequential immunostaining and photobleaching. Methods 64(2):108–113. https://doi.org/10.1016/j.ymeth.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  45. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710. https://doi.org/10.1038/nprot.2014.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naume B, Borgen E, Tossvik S, Pavlak N, Oates D, Nesland JM (2004) Detection of isolated tumor cells in peripheral blood and in BM: evaluation of a new enrichment method. Cytotherapy 6(3):244–252. https://doi.org/10.1080/14653240410006086

    Article  CAS  PubMed  Google Scholar 

  47. Marrinucci D, Bethel K, Kolatkar A, Luttgen MS, Malchiodi M, Baehring F et al (2012) Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9(1):016003. https://doi.org/10.1088/1478-3975/9/1/016003

    Article  PubMed  PubMed Central  Google Scholar 

  48. Andree KC, van Dalum G, Terstappen LWMM (2016) Challenges in circulating tumor cell detection by the CellSearch system. Mol Oncol 10(3):395–407. https://doi.org/10.1016/j.molonc.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  49. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra47. https://doi.org/10.1126/scitranslmed.3005616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamala Maheswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Burr, R. et al. (2022). Negative-Selection Enrichment of Circulating Tumor Cells from Peripheral Blood Using the Microfluidic CTC-iChip. In: Vivanco, M.d. (eds) Mammary Stem Cells. Methods in Molecular Biology, vol 2471. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2193-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2193-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2192-9

  • Online ISBN: 978-1-0716-2193-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics