Skip to main content

Creation of Yeast Models for Evaluating the Pathogenicity of Mutations in the Human Mitochondrial Gene MT-ATP6 and Discovering Therapeutic Molecules

  • Protocol
  • First Online:
Book cover Mitochondria

Abstract

Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 15 November 2022

    In Chapter 4, “Assessment of Mitochondrial Complex II and III Activity in Brain Sections: A

References

  1. Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283(5407):1488–1493

    Article  CAS  Google Scholar 

  2. Ott M, Herrmann JM (2010) Co-translational membrane insertion of mitochondrially encoded proteins. Biochim Biophys Acta 1803(6):767–775

    Article  CAS  Google Scholar 

  3. Richter C (1992) Reactive oxygen and DNA damage in mitochondria. Mut Res 275(3–6):249–255

    Article  CAS  Google Scholar 

  4. Moraes CT (2001) What regulates mitochondrial DNA copy number in animal cells? Trends Genet 17(4):199–205

    Article  CAS  Google Scholar 

  5. D’Souza AD, Parikh N, Kaech SM, Shadel GS (2007) Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion 7(6):374–385

    Article  Google Scholar 

  6. Cai W, Fu Q, Zhou X, Qu J, Tong Y, Guan MX (2008) Mitochondrial variants may influence the phenotypic manifestation of Leber’s hereditary optic neuropathy-associated ND4 G11778A mutation. J Genet Genomics 35(11):649–655

    Article  CAS  Google Scholar 

  7. Swalwell H, Blakely EL, Sutton R, Tonska K, Elstner M, He L, Taivassalo T, Burns DK, Turnbull DM, Haller RG, Davidson MM, Taylor RW (2008) A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m.7472Cins MTTS1 mutation: are two mutations better than one? Eur J Hum Genet 16(10):1265–1274

    Article  CAS  Google Scholar 

  8. Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rotig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP (2015) Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 8(6):509–526

    Article  CAS  Google Scholar 

  9. Bonnefoy N, Fox TD (2001) Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol 65:381–396

    Article  CAS  Google Scholar 

  10. Okamoto K, Perlman PS, Butow RA (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142(3):613–623

    Article  CAS  Google Scholar 

  11. Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R (2018) ATP synthase diseases of mitochondrial genetic origin. Front Physiol 9:329

    Article  Google Scholar 

  12. Guo H, Bueler SA, Rubinstein JL (2017) Atomic model for the dimeric FO region of mitochondrial ATP synthase. Science 358(6365):936–940

    Article  CAS  Google Scholar 

  13. Srivastava AP, Luo M, Zhou W, Symersky J, Bai D, Chambers MG, Faraldo-Gomez JD, Liao M, Mueller DM (2018) High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360(6389):eaas9699

    Article  Google Scholar 

  14. Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 93(11):5253–5257

    Article  CAS  Google Scholar 

  15. Schacherer J, Ruderfer DM, Gresham D, Dolinski K, Botstein D, Kruglyak L (2007) Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS One 2(3):e322

    Article  Google Scholar 

  16. Rak M, Tetaud E, Godard F, Sagot I, Salin B, Duvezin-Caubet S, Slonimski PP, Rytka J, di Rago JP (2007) Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J Biol Chem 282(15):10853–10864

    Article  CAS  Google Scholar 

  17. Rak M, Tetaud E, Duvezin-Caubet S, Ezkurdia N, Bietenhader M, Rytka J, di Rago JP (2007) A yeast model of the neurogenic ataxia retinitis pigmentosa (NARP) T8993G mutation in the mitochondrial ATP synthase-6 gene. J Biol Chem 282(47):34039–34047

    Article  CAS  Google Scholar 

  18. Kucharczyk R, Salin B, di Rago JP (2009) Introducing the human Leigh syndrome mutation T9176G into Saccharomyces cerevisiae mitochondrial DNA leads to severe defects in the incorporation of Atp6p into the ATP synthase and in the mitochondrial morphology. Hum Mol Genet 18(15):2889–2898

    Article  CAS  Google Scholar 

  19. Kucharczyk R, Giraud MF, Brethes D, Wysocka-Kapcinska M, Ezkurdia N, Salin B, Velours J, Camougrand N, Haraux F, di Rago JP (2013) Defining the pathogenesis of human mtDNA mutations using a yeast model: the case of T8851C. Int J Biochem Cell Biol 45(1):130–140

    Article  CAS  Google Scholar 

  20. Kucharczyk R, Ezkurdia N, Couplan E, Procaccio V, Ackerman SH, Blondel M, di Rago JP (2010) Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase. Biochim Biophys Acta 1797(6–7):1105–1112

    Article  CAS  Google Scholar 

  21. Kucharczyk R, Rak M, di Rago JP (2009) Biochemical consequences in yeast of the human mitochondrial DNA 8993T>C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 1793(5):817–824

    Article  CAS  Google Scholar 

  22. Kabala AM, Lasserre JP, Ackerman SH, di Rago JP, Kucharczyk R (2014) Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C. Biochimie 100:200–206

    Article  CAS  Google Scholar 

  23. Wen S, Niedzwiecka K, Zhao W, Xu S, Liang S, Zhu X, Xie H, Tribouillard-Tanvier D, Giraud MF, Zeng C, Dautant A, Kucharczyk R, Liu Z, di Rago JP, Chen H (2016) Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy. Sci Rep 6:36313

    Article  CAS  Google Scholar 

  24. Ding Q, Kucharczyk R, Zhao W, Dautant A, Xu S, Niedzwiecka K, Su X, Giraud MF, Gombeau K, Zhang M, Xie H, Zeng C, Bouhier M, di Rago JP, Liu Z, Tribouillard-Tanvier D, Chen H (2020) Case report: identification of a novel variant (m.8909T>C) of human mitochondrial ATP6 gene and its functional consequences on yeast ATP synthase. Life (Basel) 10(9):215

    Google Scholar 

  25. Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2(3):163–167

    Article  CAS  Google Scholar 

  26. Conde J, Fink GR (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A 73(10):3651–3655

    Article  CAS  Google Scholar 

  27. Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850(3):436–448

    Article  CAS  Google Scholar 

  28. Guerin B, Labbe P, Somlo M (1979) Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios. Methods Enzymol 55:149–159

    Article  CAS  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  Google Scholar 

  31. Rigoulet M, Guerin B (1979) Phosphate transport and ATP synthesis in yeast mitochondria: effect of a new inhibitor: the tribenzylphosphate. FEBS Lett 102(1):18–22

    Article  CAS  Google Scholar 

  32. Somlo M (1968) Induction and repression of mitochondrial ATPase in yeast. Eur J Biochem 5(2):276–284

    Article  CAS  Google Scholar 

  33. Bonnefoy N, Fox TD (2000) In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol Gen Genet 262(6):1036–1046

    Article  CAS  Google Scholar 

  34. di Rago J-P, Rak M, Kucharczyk R, Tetaud E, Duvezin-Caubet S (2007) Modelling in yeast of the mitochondrial ATP6 gene mutations responsible for NARP syndrome in humans and uses thereof for screening for medicaments in Patent WO/2007/125225, PCT/FR2007/000757

    Google Scholar 

  35. Schwimmer C, Rak M, Lefebvre-Legendre L, Duvezin-Caubet S, Plane G, di Rago JP (2006) Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening. Biotechnol J 1(3):270–281

    Article  CAS  Google Scholar 

  36. Kucharczyk R, Dautant A, Gombeau K, Godard F, Tribouillard-Tanvier D, di Rago JP (2019) The pathogenic MT-ATP6 m.8851T>C mutation prevents proton movements within the n-side hydrophilic cleft of the membrane domain of ATP synthase. Biochim Biophys Acta Bioenerg 1860(7):562–572

    Article  CAS  Google Scholar 

  37. Skoczen N, Dautant A, Binko K, Godard F, Bouhier M, Su X, Lasserre JP, Giraud MF, Tribouillard-Tanvier D, Chen H, di Rago JP, Kucharczyk R (2018) Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase. Biochim Biophys Acta Bioenerg 1859(8):602–611

    Article  CAS  Google Scholar 

  38. Su X, Dautant A, Rak M, Godard F, Ezkurdia N, Bouhier M, Bietenhader M, Mueller DM, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D (2021) The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 30:381

    Article  CAS  Google Scholar 

  39. Kucharczyk R, Dautant A, Godard F, Tribouillard-Tanvier D, di Rago JP (2019) Functional investigation of an universally conserved leucine residue in subunit a of ATP synthase targeted by the pathogenic m.9176T>G mutation. Biochim Biophys Acta Bioenerg 1860(1):52–59

    Article  CAS  Google Scholar 

  40. Su X, Dautant A, Godard F, Bouhier M, Zoladek T, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D (2020) Molecular basis of the pathogenic mechanism induced by the m.9191T>C mutation in mitochondrial ATP6 gene. Int J Mol Sci 21(14):5083

    Article  CAS  Google Scholar 

  41. Couplan E, Aiyar RS, Kucharczyk R, Kabala A, Ezkurdia N, Gagneur J, St Onge RP, Salin B, Soubigou F, Le Cann M, Steinmetz LM, di Rago JP, Blondel M (2011) A yeast-based assay identifies drugs active against human mitochondrial disorders. Proc Natl Acad Sci U S A 108(29):11989–11994

    Article  CAS  Google Scholar 

  42. Aiyar RS, Bohnert M, Duvezin-Caubet S, Voisset C, Gagneur J, Fritsch ES, Couplan E, von der Malsburg K, Funaya C, Soubigou F, Courtin F, Suresh S, Kucharczyk R, Evrard J, Antony C, St Onge RP, Blondel M, di Rago JP, van der Laan M, Steinmetz LM (2014) Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nat Commun 5:5585

    Article  CAS  Google Scholar 

  43. Niedzwiecka K, Kabala AM, Lasserre JP, Tribouillard-Tanvier D, Golik P, Dautant A, di Rago JP, Kucharczyk R (2016) Yeast models of mutations in the mitochondrial ATP6 gene found in human cancer cells. Mitochondrion 29:7–17

    Article  CAS  Google Scholar 

  44. Grenson M, Mousset M, Wiame JM, Bechet J (1966) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta 127(2):325–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NCN grant UMO-2016/23/B/NZ3/02098 to RK and AFM (Association Française contre les Myopathies) grant no. 22382 to DTT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Paul di Rago or Roza Kucharczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tribouillard-Tanvier, D. et al. (2022). Creation of Yeast Models for Evaluating the Pathogenicity of Mutations in the Human Mitochondrial Gene MT-ATP6 and Discovering Therapeutic Molecules. In: Tomar, N. (eds) Mitochondria. Methods in Molecular Biology, vol 2497. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2309-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2309-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2308-4

  • Online ISBN: 978-1-0716-2309-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics