Skip to main content

Discovery and Characterization of Oxidative Enzymes Involved in Monoterpenoid Indole Alkaloid Biosynthesis

  • Protocol
  • First Online:
Catharanthus roseus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2505))

Abstract

Monoterpene indole alkaloid (MIA) constitutes a structurally diverse plant natural product group with remarkable pharmacological activities. Many MIAs have been routinely used as potent drugs for several diseases, including leukemia (vinblastine), lung cancer (camptothecin), and malaria (quinine). Nevertheless, MIAs are biosynthesized at extremely low abundance in plants and, in many cases, require additional chemical functionalizations before their therapeutic uses. As oxygenations and oxidative rearrangements are critical throughout MIAs’ structural scaffolding and modifications, the discovery and engineering of oxidative enzymes play essential roles in understanding and boosting the supplies of MIAs. Recent advances in omics technologies and synthetic biology have provided unprecedented amount of biochemical data and tools, paving a wide pathway for discovering, characterizing, and engineering enzymes involved in MIA biosynthesis. Here, we discuss the latest progress in understanding the roles of oxidative enzymes in MIA metabolism and describe a bioinformatic and biochemical pipeline to identify, characterize, and make use of these plant biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan Q, Mustafa NR, Tang K et al (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250. https://doi.org/10.1007/s11101-015-9406-4

    Article  CAS  Google Scholar 

  2. Găman AM, Egbuna C, Găman MA (2019) Natural bioactive lead compounds effective against haematological malignancies. In: Phytochemicals as lead compounds for new drug discovery. Elsevier, pp 95–115. https://doi.org/10.1016/B978-0-12-817890-4.00006-8

    Chapter  Google Scholar 

  3. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749. https://doi.org/10.1016/j.phytochem.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen T-D, Dang T-TT (2021) Cytochrome P450 enzymes as key drivers of alkaloid chemical diversification in plants. Front Plant Sci 12:682181

    Article  Google Scholar 

  5. Guengerich FP (2018) Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal 8:10964–10976. https://doi.org/10.1021/acscatal.8b03401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Noble RL (1990) The discovery of the vinca alkaloids – chemotherapeutic agents against cancer. Biochem Cell Biol 68:1344–1351. https://doi.org/10.1139/o90-197

    Article  CAS  PubMed  Google Scholar 

  7. Caputi L, Franke J, Bussey K et al (2020) Structural basis of cycloaddition in biosynthesis of iboga and aspidosperma alkaloids. Nat Chem Biol 16:383–386. https://doi.org/10.1038/s41589-019-0460-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Besseau S, Kellner F, Lanoue A et al (2013) A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol 163:1792–1803. https://doi.org/10.1104/pp.113.222828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qu Y, Easson MLAE, Froese J et al (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 112:6224–6229. https://doi.org/10.1073/pnas.1501821112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tatsis EC, Carqueijeiro I, Dugé de Bernonville T et al (2017) A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun 8:316. https://doi.org/10.1038/s41467-017-00154-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caputi L, Franke J, Farrow SC et al (2018) Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science (80- ) 360:1235–1239. https://doi.org/10.1126/science.aat4100

    Article  CAS  Google Scholar 

  12. Qu Y, Easson MEAM, Simionescu R et al (2018) Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc Natl Acad Sci 115:3180–3185. https://doi.org/10.1073/pnas.1719979115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Farrow SC, Kamileen MO, Caputi L et al (2019) Biosynthesis of an anti-addiction agent from the iboga plant. J Am Chem Soc 141:12979–12983. https://doi.org/10.1021/jacs.9b05999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dang T-TT, Franke J, Carqueijeiro IST et al (2018) Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. Nat Chem Biol 14:760–763. https://doi.org/10.1038/s41589-018-0078-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dang T-TT, Franke J, Tatsis E, O’Connor SE (2017) Dual catalytic activity of a cytochrome P450 controls bifurcation at a metabolic branch point of alkaloid biosynthesis in Rauwolfia serpentina. Angew Chem Int Ed Engl 56:9440–9444. https://doi.org/10.1002/anie.201705010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopez-Meyer M, Nessler CL, McKnight TD (1994) Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med 60:558–560. https://doi.org/10.1055/s-2006-959571

    Article  CAS  PubMed  Google Scholar 

  17. Yu S, Huang QQ, Luo Y, Lu W (2012) Total synthesis of camptothecin and SN-38. J Org Chem 77:713–717. https://doi.org/10.1021/jo201974f

    Article  CAS  PubMed  Google Scholar 

  18. Zhao D, Hamilton JP, Pham GM et al (2017) De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascience 6:1–7. https://doi.org/10.1093/gigascience/gix065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rather GA, Sharma A, Pandith SA et al (2018) De novo transcriptome analyses reveals putative pathway genes involved in biosynthesis and regulation of camptothecin in Nothapodytes nimmoniana (Graham) Mabb. Plant Mol Biol 96:197–215. https://doi.org/10.1007/s11103-017-0690-9

    Article  CAS  PubMed  Google Scholar 

  20. Godbole RC, Pable AA, Barvkar VT (2020) Transcriptome-wide identification, characterization, and phylogenomic analysis of cytochrome p450s from nothapodytes nimmoniana reveal candidate genes involved in the camptothecin biosynthetic pathway. Genome 64:1–14. https://doi.org/10.1139/gen-2020-0067

    Article  CAS  PubMed  Google Scholar 

  21. Rai A, Hirakawa H, Nakabayashi R et al (2021) Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat Commun 12:1–19. https://doi.org/10.1038/s41467-020-20508-2

    Article  CAS  Google Scholar 

  22. Kellner F, Kim J, Clavijo BJ et al (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82(4):680–692. https://doi.org/10.1111/tpj.12827

    Article  CAS  PubMed  Google Scholar 

  23. Góngora-Castillo E, Childs KL, Fedewa G et al (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS One 7:e52506. https://doi.org/10.1371/journal.pone.0052506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brose J, Lau KH, Dang TTT et al (2021) The Mitragyna speciosa (Kratom) genome: a resource for data-mining potent pharmaceuticals that impact human health. G3 Genes|Genomes|Genetics 11(4):jkab058. https://doi.org/10.1093/g3journal/jkab058

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nett RS, Lau W, Sattely ES (2020) Discovery and engineering of colchicine alkaloid biosynthesis. Nature 584:148–153. Springer US

    Article  CAS  Google Scholar 

  26. Stander EA, Sepúlveda LJ, de Bernonville TD et al (2020) Identifying genes involved in alkaloid biosynthesis in vinca minor through transcriptomics and gene co-expression analysis. Biomol Ther 10:1–26. https://doi.org/10.3390/biom10121595

    Article  CAS  Google Scholar 

  27. Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science (80- ) 349:1224–1228. https://doi.org/10.1126/science.aac7202

    Article  CAS  Google Scholar 

  28. Payne RME, Xu D, Foureau E et al (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3:16208. https://doi.org/10.1038/nplants.2016.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hagel JM, Facchini PJ (2010) Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 6:273–275. https://doi.org/10.1038/nchembio.317

    Article  CAS  PubMed  Google Scholar 

  30. Jensen PR (2016) Natural products and the gene cluster revolution. Trends Microbiol 24:968–977

    Article  CAS  Google Scholar 

  31. Liu Z, Cheema J, Vigouroux M et al (2020) Formation and diversification of a paradigm biosynthetic gene cluster in plants. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-19153-6

    Article  CAS  Google Scholar 

  32. Winzer T, Gazda V, He Z et al (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336(6089):1704–1708

    Article  CAS  Google Scholar 

  33. Franke J, Kim J, Hamilton JP et al (2019) Gene discovery in Gelsemium highlights conserved gene clusters in monoterpene indole alkaloid biosynthesis. Chembiochem 20:83–87. https://doi.org/10.1002/cbic.201800592

    Article  CAS  PubMed  Google Scholar 

  34. Guo L, Winzer T, Yang X et al (2018) The opium poppy genome and morphinan production. Science (80- ) 347:343–347. https://doi.org/10.1126/science.aat4096

    Article  CAS  Google Scholar 

  35. Kautsar SA, Suarez Duran HG, Blin K et al (2017) PlantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res 45:W55–W63. https://doi.org/10.1093/nar/gkx305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci 112:3205–3210. https://doi.org/10.1073/pnas.1423555112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galanie S, Thodey K, Trenchard IJ et al (2015) Complete biosynthesis of opioids in yeast. Science (80- ) 349:1095–1100. https://doi.org/10.1126/science.aac9373

    Article  CAS  Google Scholar 

  38. Li Y, Smolke CD (2016) Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun 7:12137. https://doi.org/10.1038/ncomms12137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Emms DM, Kelly S (2018) OrthoFinder: phylogenetic orthology inference for comparative genomics. bioRxiv:1–14. https://doi.org/10.1101/466201

  40. Nguyen TD, MacNevin G, Ro DK (2012) De novo synthesis of high-value plant sesquiterpenoids in yeast. In: Methods in enzymology, 1st edn. Elsevier Inc., pp 261–278

    Google Scholar 

  41. Ro D, Ouellet M, Paradise EM et al (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83. https://doi.org/10.1186/1472-6750-8-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farrow SC, Kamileen MO, Meades J et al (2018) Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. J Biol Chem 293:13821–13833. https://doi.org/10.1074/jbc.RA118.004060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nguyen DT, Göpfert JC, Ikezawa N et al (2010) Biochemical conservation and evolution of germacrene A oxidase in asteraceae. J Biol Chem 285:16588–16598. https://doi.org/10.1074/jbc.M110.111757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikezawa N, Göpfert JC, Nguyen DT et al (2011) Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J Biol Chem 286:21601–21611. https://doi.org/10.1074/jbc.M110.216804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miettinen K, Dong L, Navrot N et al (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606. https://doi.org/10.1038/ncomms4606

    Article  CAS  PubMed  Google Scholar 

  46. Davis K, Gkotsi DS, Smith DRM et al (2020) Nicotiana benthamiana as a transient expression host to produce auxin analogs. Front Plant Sci 11:1–9. https://doi.org/10.3389/fpls.2020.581675

    Article  Google Scholar 

  47. Parage C, Foureau E, Kellner F et al (2016) Class II cytochrome P450 reductase governs the biosynthesis of alkaloids. Plant Physiol 172:1563–1577. https://doi.org/10.1104/pp.16.00801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kellner F, Geu-Flores F, Sherden NH et al (2015) Discovery of a P450-catalyzed step in vindoline biosynthesis: a link between the aspidosperma and eburnamine alkaloids. Chem Commun 51:7626–7628. https://doi.org/10.1039/C5CC01309G

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thu-Thuy T. Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, TA.M., McConnachie, M., Nguyen, TD., Dang, TT.T. (2022). Discovery and Characterization of Oxidative Enzymes Involved in Monoterpenoid Indole Alkaloid Biosynthesis. In: Courdavault, V., Besseau, S. (eds) Catharanthus roseus. Methods in Molecular Biology, vol 2505. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2349-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2349-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2348-0

  • Online ISBN: 978-1-0716-2349-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics