Skip to main content

Statistical Thermodynamics Approach for Intracellular Phase Separation

  • Protocol
  • First Online:
piRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2509))

  • 981 Accesses

Abstract

Phase separation is one of the fundamental processes to compartmentalize biomolecules in living cells. RNA–protein complexes (RNPs) often scaffold biomolecular condensates formed through phase separation. We here present a statistical thermodynamics approach to investigate intracellular phase separation. We first present the statistical thermodynamic theory of the liquid-liquid phase separation (LLPS) of two molecules (such as proteins and solvent molecules) and of a polymer solution (such as RNPs and solvent molecules). Condensates produced by LLPS show coarsening and/or coalescence to minimize their total surface area. In addition to the LLPS, there are other types of self-assembly, such as microphase separation, micellization, emulsification, and vesiculation, with which the growth of the assembly stops with optimal size and shape. We also describe a scaling theory of micelles of block copolymers, where their structures are analogous to the core-shell structure of paraspeckle nuclear bodies scaffolded by RNPs of NEAT1_2 long noncoding RNAs (lncRNAs) and RNA-binding proteins (RBPs). These theories treat the self-assembly of polymers in the thermodynamic equilibrium, where their concentrations and compositions do not change with time. In contrast, RNPs are produced according to the transcription of RNAs and are degraded with time. We therefore take into account the dynamical aspect of the production of RNPs in an extension of the theory of the self-assembly of soft matter. Finally, we discuss the structure of paraspeckles as an example to demonstrate that an approach combining experiment and theory is powerful to investigate the mechanism of intracellular phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banani SF et al (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5):285–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Schmidt HB, Gorlich D (2016) Transport selectivity of nuclear pores, phase separation, and Membraneless organelles. Trends Biochem Sci 41(1):46–61

    Article  PubMed  CAS  Google Scholar 

  3. Fujioka Y et al (2020) Phase separation organizes the site of autophagosome formation. Nature 578(7794):301–305

    Article  PubMed  CAS  Google Scholar 

  4. Spannl S et al (2019) Biomolecular condensates in neurodegeneration and cancer. Traffic 20(12):890–911

    Article  PubMed  CAS  Google Scholar 

  5. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357(6357):eaaf4382

    Article  PubMed  Google Scholar 

  6. Mathieu C, Pappu RV, Taylor JP (2020) Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370(6512):56–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zbinden A et al (2020) Phase separation and neurodegenerative diseases: a disturbance in the force. Dev Cell 55(1):45–68

    Article  PubMed  CAS  Google Scholar 

  8. Chujo T, Yamazaki T, Hirose T (2016) Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta 1859(1):139–146

    Article  PubMed  CAS  Google Scholar 

  9. Maharana S et al (2018) RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360(6391):918–921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Van Treeck B, Parker R (2018) Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174(4):791–802

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yamazaki T, Nakagawa S, Hirose T (2020) Architectural RNAs for Membraneless nuclear body formation. Cold Spring Harb Symp Quant Biol 84:227–237

    Article  Google Scholar 

  12. Ninomiya K, Hirose T (2020) Short tandem repeat-enriched architectural RNAs in nuclear bodies: functions and associated diseases. Noncoding RNA 6(1):6

    Article  PubMed Central  CAS  Google Scholar 

  13. Chujo T et al (2017) Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J 36(10):1447–1462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yap K et al (2018) A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol Cell 72(3):525–540.e13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Safran SA (2003) Statistical thermodynamics of surfaces, interfaces, and membranes. Westview Press, CO., Routledge

    Google Scholar 

  16. Doi M (2013) Soft matter physics. Oxford Univ. Press, Oxford

    Book  Google Scholar 

  17. Doi M (1996) Introduction to polymer physics. Oxford Univ. Press, Oxford

    Google Scholar 

  18. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ. Press, New York

    Google Scholar 

  19. Rubinstein M, Colby R (2003) Polymer physics. Oxford Univ. Press, New York

    Google Scholar 

  20. Yamazaki T, Yamamoto T, Yoshino H, Souquere S, Nakagawa S, Pierron G, Hirose T (2021) Paraspeckles are constructed as block copolymer micelles. EMBO J 40(12):e107270. https://doi.org/10.15252/embj.2020107270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yamamoto T, Yamazaki T, Hirose T (2020) Triblock copolymer micelle model of spherical paraspeckles. bioRxiv. https://doi.org/10.1101/2020.11.01.364190

  22. Halperin A, Alexander S (1989) Polymer micelles: their relaxation kinetics. Macromolecules 22:2403–2412

    Article  CAS  Google Scholar 

  23. Zhulina EB, Adam M, LaRue I, Sheiko SS, Rubinstein M (2005) Diblock copolymer micelles in a dilute solution. Macromolecules 38:5330–5535

    Article  CAS  Google Scholar 

  24. Yamamoto T, Yamazaki T, Hirose T (2020) Phase separation driven by production of architectural RNA transcripts. Soft Matter 16(19):4692–4698

    Article  PubMed  CAS  Google Scholar 

  25. Sasaki YT et al (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A 106(8):2525–2530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sunwoo H et al (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19(3):347–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35(4):467–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Clemson CM et al (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33(6):717–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yamazaki T et al (2018) Functional domains of NEAT1 architectural lncRNA induce Paraspeckle assembly through phase separation. Mol Cell 70(6):1038–1053 e7

    Article  PubMed  CAS  Google Scholar 

  30. Mao YS et al (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13(1):95–101

    Article  PubMed  CAS  Google Scholar 

  31. Naganuma T et al (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31(20):4020–4034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Souquere S et al (2010) Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell 21(22):4020–4027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. West JA et al (2016) Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol 214(7):817–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Souquere S, Pierron G (2015) Ultrastructural analysis of nuclear bodies using electron microscopy. Methods Mol Biol 1262:105–118

    Article  PubMed  CAS  Google Scholar 

  35. Mito M et al (2016) Simultaneous multicolor detection of RNA and proteins using super-resolution microscopy. Methods 98:158–165

    Article  PubMed  CAS  Google Scholar 

  36. Yamazaki T, Hirose T (2021) CRISPR-mediated mutagenesis of long noncoding RNAs. Methods Mol Biol 2254:283–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by KAKENHI grants from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan [to T. Yamazaki (19K06479, 19H05250, 21H00253), T. Yamamoto (18K03558, 19H05259, 20H05934, 21K03479, 21H00241)], JST, PRESTO Grant Number JPMJPR18KA (to T. Yamamoto), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (to T. Yamazaki), the Naito Foundation (to T. Yamazaki), and the Takeda Science Foundation (to T. Yamazaki). T. Yamamoto acknowledges S. A. Safran (Weizmann Institute of Science) and Takahiro Sakaue (Aoyama Gakuin University) for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Yamazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamazaki, T., Yamamoto, T. (2022). Statistical Thermodynamics Approach for Intracellular Phase Separation. In: Parrish, N.F., Iwasaki, Y.W. (eds) piRNA. Methods in Molecular Biology, vol 2509. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2380-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2380-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2379-4

  • Online ISBN: 978-1-0716-2380-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics