Skip to main content

Versatile CRISPR-Based Method for Site-Specific Insertion of Repeat Arrays to Visualize Chromatin Loci in Living Cells

  • Protocol
  • First Online:
Book cover Spatial Genome Organization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2532))

Abstract

Hi-C and related sequencing-based techniques have brought a detailed understanding of the 3D genome architecture and the discovery of novel structures such as topologically associating domains (TADs) and chromatin loops, which emerge from cohesin-mediated DNA extrusion. However, these techniques require cell fixation, which precludes assessment of chromatin structure dynamics, and are generally restricted to population averages, thus masking cell-to-cell heterogeneity. By contrast, live-cell imaging allows to characterize and quantify the temporal dynamics of chromatin, potentially including TADs and loops in single cells. Specific chromatin loci can be visualized at high temporal and spatial resolution by inserting a repeat array from bacterial operator sequences bound by fluorescent tags. Using two different types of repeats allows to tag both anchors of a loop in different colors, thus enabling to track them separately even when they are in close vicinity. Here, we describe a versatile cloning method for generating many repeat array repair cassettes in parallel and inserting them by CRISPR-Cas9 into the human genome. This method should be instrumental to studying chromatin loop dynamics in single human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 14 September 2022

    In the original version of this book, Chapter 13 was published with few errors. This has been rectified in the updated version of this book.

References

  1. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  Google Scholar 

  2. Cardozo Gizzi AM, Cattoni DI, Fiche J-B et al (2019) Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol Cell 74(1):212–222.e5

    Article  CAS  Google Scholar 

  3. Bintu B, Mateo LJ, Su J-H et al (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:eaau1783

    Article  Google Scholar 

  4. Boettiger A, Murphy S (2020) Advances in chromatin imaging at kilobase-scale resolution. Trends Genet 36(4):273–287

    Article  CAS  Google Scholar 

  5. Rao SSP, Huang S-C, Glenn St Hilaire B et al (2017) Cohesin loss eliminates all loop domains. Cell 171:305–320.e24

    Article  CAS  Google Scholar 

  6. Parmar JJ, Woringer M, Zimmer C (2019) How the genome folds: the biophysics of four-dimensional chromatin organization. Annu Rev Biophys 48:231–253

    Article  CAS  Google Scholar 

  7. Fudenberg G, Abdennur N, Imakaev M et al (2017) Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb Symp Quant Biol 82:45–55

    Article  Google Scholar 

  8. Davidson IF, Bauer B, Goetz D et al (2019) DNA loop extrusion by human cohesin. Science 366(6471):1338–1345

    Article  CAS  Google Scholar 

  9. Sikorska N, Sexton T (2019) Defining functionally relevant spatial chromatin domains: it’s a TAD complicated. J Mol Biol 432(3):653–664

    Article  Google Scholar 

  10. Hansen AS, Cattoglio C, Darzacq X et al (2018) Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus 9:20–32

    Article  CAS  Google Scholar 

  11. Beagan JA, Phillips-Cremins JE (2020) On the existence and functionality of topologically associating domains. Nat Genet 52:8–16

    Article  CAS  Google Scholar 

  12. Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  CAS  Google Scholar 

  13. Alexander JM, Guan J, Huang B et al (2018) Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Elife 8:e41769

    Article  Google Scholar 

  14. Mullick A, Xu Y, Warren R et al (2006) The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol 6:43

    Article  Google Scholar 

  15. Germier T, Audibert S, Kocanova S et al (2018) Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods 142:16–23

    Article  Google Scholar 

  16. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  17. Tasan I, Sustackova G, Zhang L et al (2018) CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci. Nucleic Acids Res 46:e100

    Article  Google Scholar 

  18. Brandão HB, Gabriele M, Hansen AS (2021) Tracking and interpreting long-range chromatin interactions with super-resolution live-cell imaging. Curr Opin Cell Biol 70:18–26

    Article  Google Scholar 

  19. Schermelleh L, Ferrand A, Huser T et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84

    Article  CAS  Google Scholar 

  20. Grimm JB, Muthusamy AK, Liang Y et al (2017) A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat Methods 14:987–994

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Sabaté or Edouard Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sabaté, T., Zimmer, C., Bertrand, E. (2022). Versatile CRISPR-Based Method for Site-Specific Insertion of Repeat Arrays to Visualize Chromatin Loci in Living Cells. In: Sexton, T. (eds) Spatial Genome Organization. Methods in Molecular Biology, vol 2532. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2497-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2497-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2496-8

  • Online ISBN: 978-1-0716-2497-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics