Skip to main content

Determination of Effects and Mechanisms of Action of Bacterial Amyloids on Antibiotic Resistance

  • Protocol
  • First Online:
Bacterial Amyloids

Abstract

Bacterial functional amyloids, apart from their many other functions, can influence the resistance of bacteria to antibiotics and other antibacterial agents. Mechanisms of modulation of susceptibility of bacterial cells to antimicrobials can be either indirect or direct. The former mechanisms are exemplified by the contribution of functional amyloids to biofilm formation, which may effectively prevent the penetration of various compounds into bacterial cells. The direct mechanisms include the effects of bacterial proteins revealing amyloid-like structures, like the C-terminal region of the Escherichia coli Hfq protein, on the expression of genes involved in antibiotic resistance. Therefore, in this paper, we describe methods by which effects and mechanisms of action of bacterial amyloids on antibiotic resistance can be studied. Assessment of formation of biofilms, determination of the efficiency of antibiotic resistance in solid and liquid media, and determination of the effects on gene expression at levels of mRNA abundance and stability and protein abundance are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levkovich SA, Gazit E, Laor Bar-Yosef D (2021) Two decades of studying functional amyloids in microorganisms. Trends Microbiol 29:251–265. https://doi.org/10.1016/j.tim.2020.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Van Gerven N, Klein RD, Hultgren SJ, Remaut H (2015) Bacterial amyloid formation: structural insights into curli biogenesis. Trends Microbiol 23:693–706. https://doi.org/10.1016/j.tim.2015.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhoite S, van Gerven N, Chapman MR, Remaut H (2019) Curli biogenesis: bacterial amyloid assembly by the type VIII secretion pathway. EcoSal Plus 8:ESP-0037-2018. https://doi.org/10.1128/ecosalplus.ESP-0037-2018

    Article  Google Scholar 

  4. Matilla-Cuenca L, Toledo-Arana A, Valle J (2021) Anti-biofilm molecules targeting functional amyloids. Antibiotics 10:795. https://doi.org/10.3390/antibiotics10070795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cech GM, Szalewska-Pałasz A, Kubiak K, Malabirade A, Grange W, Arluison V, Węgrzyn G (2016) The Escherichia coli Hfq protein: an unattended DNA-transactions regulator. Front Mol Biosci 3:36. https://doi.org/10.3389/fmolb.2016.00036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fortas E, Piccirilli F, Malabirade A, Militello V, Trépout S, Marco S, Taghbalout A, Arluison (2015) New insight into the structure and function of Hfq C-terminus. Biosci Rep 35:1–9. https://doi.org/10.1042/BSR20140128

    Article  CAS  Google Scholar 

  7. Malabirade A, Morgado-Brajones J, Trépout S, Wien F, Marquez I, Seguin J, Marco S, Velez M, Arluison V (2017) Membrane association of the bacterial riboregulator Hfq and functional perspectives. Sci Rep 7:10724. https://doi.org/10.1038/s41598-017-11157-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang K, Zhang C, Guttula D, Liu F, van Kan JA, Lavelle C, Kubiak K, Malabirade A, Lapp A, Arluison V, van der Maarel JR (2015) Effects of Hfq on the conformation and compaction of DNA. Nucleic Acids Res 43:4332–4341. https://doi.org/10.1093/nar/gkv268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malabirade A, Jiang K, Kubiak K, Diaz-Mendoza A, Liu F, van Kan JA, Berret JF, Arluison V, van der Maarel JRC (2017) Compaction and condensation of DNA mediated by the C-terminal domain of Hfq. Nucleic Acids Res 45:7299–7308. https://doi.org/10.1093/nar/gkx431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malabirade A, Partouche D, El Hamoui O, Turbant F, Geinguenaud F, Recouvreux P, Bizien T, Busi F, Wien F, Arluison V (2018) Revised role for Hfq bacterial regulator on DNA topology. Sci Rep 8:16792. https://doi.org/10.1038/s41598-018-35060-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wien F, Martinez D, Le Brun E, Jones NC, Vrønning Hoffmann S, Waeytens J, Berbon M, Habenstein B, Arluison V (2019) The bacterial amyloid-kike Hfq promotes in vitro DNA alignment. Microorganisms 7:639. https://doi.org/10.3390/microorganisms7120639

    Article  CAS  PubMed Central  Google Scholar 

  12. El Hamoui O, Yadav I, Radiom M, Wien F, Berret JF, van der Maarel JRC, Arluison V (2020) Interactions between DNA and the Hfq amyloid-like region trigger a viscoelastic response. Biomacromolecules 21:3668–3677. https://doi.org/10.1021/acs.biomac.0c00747

    Article  CAS  PubMed  Google Scholar 

  13. Turbant F, Wu P, Wien F, Arluison V (2021) The amyloid region of Hfq riboregulator promotes DsrA::rpoS RNAs annealing. Biology 10:900. https://doi.org/10.3390/biology10090900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Partouche D, Militello V, Gomez-Zavaglia A, Wien F, Sandt C, Arluison V (2019) In situ characterization of Hfq bacterial amyloid: a Fourier-transform infrared spectroscopy study. Pathogens 8:36. https://doi.org/10.3390/pathogens8010036

    Article  CAS  PubMed Central  Google Scholar 

  15. Parekh VJ, Niccum BA, Shah R, Rivera MA, Novak MJ, Geinguenaud F, Wien F, Arluison V, Sinden RR (2019) Role of Hfq in genome evolution: instability of G-quadruplex eequences in E. coli. Microorganisms 8:28. https://doi.org/10.3390/microorganisms8010028

    Article  CAS  PubMed Central  Google Scholar 

  16. Parekh VJ, Wien F, Grange W, De Long TA, Arluison V, Sinden RR (2020) Crucial role of the C-terminal domain of Hfq protein in genomic instability. Microorganisms 8:1598. https://doi.org/10.3390/microorganisms8101598

    Article  CAS  PubMed Central  Google Scholar 

  17. Partouche D, Turbant F, El Hamoui O, Campidelli C, Bombled M, Trépout S, Wien F, Arluison V (2018) Epigallocatechin gallate remodelling of Hfq amyloid-like region affects Escherichia coli survival. Pathogens 7:95. https://doi.org/10.3390/pathogens7040095

    Article  CAS  PubMed Central  Google Scholar 

  18. Turbant F, Partouche D, El Hamoui O, Trépout S, Legoubey T, Wien F, Arluison V (2021) Apomorphine targets the pleiotropic bacterial regulator Hfq. Antibiotics 10:257. https://doi.org/10.3390/antibiotics10030257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaffke L, Kubiak K, Cyske Z, Węgrzyn G (2021) Differential chromosome- and plasmid-borne resistance of Escherichia coli hfq mutants to high concentrations of various antibiotics. Int J Mol Sci 22:8886. https://doi.org/10.3390/ijms22168886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kosznik-Kwaśnicka K, Ciemińska K, Grabski M, Grabowski Ł, Górniak M, Jurczak-Kurek A, Węgrzyn G, Węgrzyn A (2020) Characteristics of a series of three bacteriophages infecting Salmonella enterica strains. Int J Mol Sci 21:6152. https://doi.org/10.3390/ijms21176152

    Article  CAS  PubMed Central  Google Scholar 

  21. Jaroszewicz W, Bielańska P, Lubomska D, Kosznik-Kwaśnicka K, Golec P, Grabowski Ł, Wieczerzak E, Dróżdż W, Gaffke L, Pierzynowska K, Węgrzyn G, Węgrzyn A (2021) Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated Streptomyces strains from the Szczelina Chochołowska Cave (Tatra Mountains, Poland). Antibiotics 10:1212. https://doi.org/10.3390/antibiotics10101212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Topka G, Bloch S, Nejman-Faleńczyk B, Gąsior T, Jurczak-Kurek A, Necel A, Dydecka A, Richert M, Węgrzyn G, Węgrzyn A (2019) Characterization of bacteriophage vB-EcoS-95, isolated from urban sewage and revealing extremely rapid lytic development. Front Microbiol 9:3326. https://doi.org/10.3389/fmicb.2018.03326

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Węgrzyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kubiak, K. et al. (2022). Determination of Effects and Mechanisms of Action of Bacterial Amyloids on Antibiotic Resistance. In: Arluison, V., Wien, F., Marcoleta, A. (eds) Bacterial Amyloids. Methods in Molecular Biology, vol 2538. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2529-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2529-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2528-6

  • Online ISBN: 978-1-0716-2529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics