Skip to main content

Monitoring Molecular Assembly of Biofilms Using Quartz Crystal Microbalance with Dissipation (QCM-D)

  • Protocol
  • First Online:
Bacterial Amyloids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2538))

Abstract

The structure and the functionality of biofilm proteins, the main components of the extracellular matrix, can be tuned by protein engineering. The use of binding kinetics data has been demonstrated in the characterization of recombinantly produced biofilm proteins to control their behavior on certain surfaces or under certain conditions. Quartz crystal microbalance with dissipation monitoring (QCM-D) allows measuring the change in resonance frequency and the energy loss and distribution upon the interaction of molecules with the surface. The characterization of the molecular assembly of curli biofilm proteins on different surfaces using QCM-D is presented here as a detailed protocol. The experimental procedure detailed in this chapter can be applied and modified for other biofilm proteins or subunits to determine their surface adsorption and kinetic binding characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Gerven N, Klein RD, Hultgren SJ, Remaut H (2015) Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23(11):693–706. https://doi.org/10.1016/j.tim.2015.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R (2017) Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 46(15):4661–4708. https://doi.org/10.1039/C6CS00542J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pham CL, Kwan AH, Sunde M (2014) Functional amyloid: widespread in nature, diverse in purpose. Essays Biochem 56:207–219. https://doi.org/10.1042/bse0560207

    Article  PubMed  Google Scholar 

  4. Zhao J, Yang P (2020) Amyloid-mediated fabrication of organic–inorganic hybrid materials and their biomedical applications. Adv Mater Interfaces 7(19):2001060. https://doi.org/10.1002/admi.202001060

    Article  CAS  Google Scholar 

  5. Li D, Jones EM, Sawaya MR, Furukawa H, Luo F, Ivanova M, Sievers SA, Wang W, Yaghi OM, Liu C, Eisenberg DS (2014) Structure-based design of functional amyloid materials. J Am Chem Soc 136(52):18044–18051. https://doi.org/10.1021/ja509648u

    Article  CAS  PubMed  Google Scholar 

  6. Sahin Kehribar E, Isilak ME, Bozkurt EU, Adamcik J, Mezzenga R, Seker UOS (2021) Engineering of biofilms with a glycosylation circuit for biomaterial applications. Biomater Sci 9(10):3650–3661. https://doi.org/10.1039/D0BM02192J

    Article  CAS  PubMed  Google Scholar 

  7. Onur T, Yuca E, Olmez TT, Seker UOS (2018) Self-assembly of bacterial amyloid protein nanomaterials on solid surfaces. J Colloid Interface Sci 520:145–154. https://doi.org/10.1016/j.jcis.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  8. Kalyoncu E, Ahan RE, Ozcelik CE, Seker UOS (2019) Genetic logic gates enable patterning of amyloid nanofibers. Adv Mater 31(39):1902888. https://doi.org/10.1002/adma.201902888

    Article  CAS  Google Scholar 

  9. Yuca E, Şahin Kehribar E, Şeker UÖŞ (2021) Interaction of microbial functional amyloids with solid surfaces. Colloids Surf B: Biointerfaces 199:111547. https://doi.org/10.1016/j.colsurfb.2020.111547

    Article  CAS  PubMed  Google Scholar 

  10. Stank A, Kokh DB, Fuller JC, Wade RC (2016) Protein binding pocket dynamics. Acc Chem Res 49(5):809–815. https://doi.org/10.1021/acs.accounts.5b00516

    Article  CAS  PubMed  Google Scholar 

  11. Lord MS, Modin C, Foss M, Duch M, Simmons A, Pedersen FS, Milthorpe BK, Besenbacher F (2006) Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27(26):4529–4537. https://doi.org/10.1016/j.biomaterials.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  12. Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 19(3):151–158

    PubMed  PubMed Central  Google Scholar 

  13. Tonda-Turo C, Carmagnola I, Ciardelli G (2018) Quartz crystal microbalance with dissipation monitoring: a powerful method to predict the in vivo behavior of bioengineered surfaces. Front Bioeng Biotechnol 6:158. https://doi.org/10.3389/fbioe.2018.00158

    Article  PubMed  PubMed Central  Google Scholar 

  14. Teo A, Dimartino S, Lee SJ, Goh KKT, Wen J, Oey I, Ko S, Kwak H-S (2016) Interfacial structures of whey protein isolate (WPI) and lactoferrin on hydrophobic surfaces in a model system monitored by quartz crystal microbalance with dissipation (QCM-D) and their formation on nanoemulsions. Food Hydrocoll 56:150–160. https://doi.org/10.1016/j.foodhyd.2015.12.002

    Article  CAS  Google Scholar 

  15. Olmez TT, Yuca E, Eyupoglu E, Catalak HB, Sahin O, Seker UOS (2018) Autonomous synthesis of fluorescent silica biodots using engineered fusion proteins. ACS Omega 3(1):585–594. https://doi.org/10.1021/acsomega.7b01769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urartu Özgür Şafak Şeker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yuca, E., Şeker, U.Ö.Ş. (2022). Monitoring Molecular Assembly of Biofilms Using Quartz Crystal Microbalance with Dissipation (QCM-D). In: Arluison, V., Wien, F., Marcoleta, A. (eds) Bacterial Amyloids. Methods in Molecular Biology, vol 2538. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2529-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2529-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2528-6

  • Online ISBN: 978-1-0716-2529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics