Skip to main content

NMR Analysis of Mammalian Glycolipids

  • Protocol
  • First Online:
Glycolipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2613))

  • 696 Accesses

Abstract

Mammalian glycolipids play a variety of roles, often coupled with interactions with endogenous and exogenous molecules. The interactions can induce intracellular signaling and are the means by which glycolipids express biological phenotypes. Insights into the structure–function relationships of glycolipids (both glycan and lipid moieties) provide the basis for gaining an understanding of the mechanisms at play, an important area for further study. Solution nuclear magnetic resonance (NMR) spectroscopy is a unique and powerful method employed to provide, at the atomic level, structural information on glycolipids and other biomolecules in solutions. This chapter briefly describes how we measure NMR spectra of glycolipids and the information gained from NMR spectral analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzaz F, Yahi N, Di Scala C, Chahinian H, Fantini J (2022) Ganglioside binding domains in proteins: physiological and pathological mechanisms. Adv Protein Chem Struct Biol 128:289–324. https://doi.org/10.1016/bs.apcsb.2021.08.003

    Article  Google Scholar 

  2. Kanoh H, Nitta T, Go S, Inamori KI, Veillon L, Nihei W, Fujii M, Kabayama K, Shimoyama A, Fukase K, Ohto U, Shimizu T, Watanabe T, Shindo H, Aoki S, Sato K, Nagasaki M, Yatomi Y, Komura N, Ando H, Ishida H, Kiso M, Natori Y, Yoshimura Y, Zonca A, Cattaneo A, Letizia M, Ciampa M, Mauri L, Prinetti A, Sonnino S, Suzuki A, Inokuchi JI (2020) Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. EMBO J 39(12):e101732. https://doi.org/10.15252/embj.2019101732

    Article  Google Scholar 

  3. Wang F, Dai Y, Zhu X, Chen Q, Zhu H, Zhou B, Tang H, Pang S (2021) Saturated very long chain fatty acid configures glycosphingolipid for lysosome homeostasis in long-lived C. elegans. Nat Commun 12(1):5073. https://doi.org/10.1038/s41467-021-25398-6

    Article  Google Scholar 

  4. Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y (2008) 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta 1780(3):619–625. https://doi.org/10.1016/j.bbagen.2007.11.014

    Article  Google Scholar 

  5. Utsumi M, Yamaguchi Y, Sasakawa H, Yamamoto N, Yanagisawa K, Kato K (2009) Up-and-down topological mode of amyloid beta-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj J 26(8):999–1006. https://doi.org/10.1007/s10719-008-9216-7

    Article  Google Scholar 

  6. Yagi-Utsumi M, Kameda T, Yamaguchi Y, Kato K (2010) NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid beta. FEBS Lett 584(4):831–836. https://doi.org/10.1016/j.febslet.2010.01.005

    Article  Google Scholar 

  7. Sandhoff K, Kolter T (2003) Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond Ser B Biol Sci 358(1433):847–861. https://doi.org/10.1098/rstb.2003.1265

    Article  Google Scholar 

  8. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422. https://doi.org/10.1021/cr2002917

    Article  Google Scholar 

  9. RL S, T K (2017) Glycosphingolipids Chatper 11. Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/books/NBK453016/

    Google Scholar 

  10. Dabrowski J, Hanfland P, Egge H (1980) Structural analysis of glycosphinoglipids by high-resolution 1H nuclear magnetic resonance spectroscopy. Biochemistry 19(24):5652–5658. https://doi.org/10.1021/bi00565a030

    Article  Google Scholar 

  11. Koerner TA Jr, Prestegard JH, Demou PC, Yu RK (1983) High-resolution proton NMR studies of gangliosides. 1. Use of homonuclear two-dimensional spin-echo J-correlated spectroscopy for determination of residue composition and anomeric configurations. Biochemistry 22(11):2676–2687. https://doi.org/10.1021/bi00280a014

    Article  Google Scholar 

  12. Koerner TA Jr, Prestegard JH, Demou PC, Yu RK (1983) High-resolution proton NMR studies of gangliosides. 2. Use of two-dimensional nuclear Overhauser effect spectroscopy and sialylation shifts for determination of oligosaccharide sequence and linkage sites. Biochemistry 22 (11):2687-2690. https://doi.org/10.1021/bi00280a015

  13. Inagaki F, Kodama C, Suzuki M, Suzuki A (1987) Analysis of NMR spectra of sugar chains of glycolipids by 1D homonuclear Hartmann-Hahn and NOE experiments. FEBS Lett 219(1):45–50. https://doi.org/10.1016/0014-5793(87)81188-2

    Article  Google Scholar 

  14. Yoshida F, Yoshinaka H, Tanaka H, Hanashima S, Yamaguchi Y, Ishihara M, Saburomaru M, Kato Y, Saito R, Ando H, Kiso M, Imamura A, Ishida H (2019) Synthesis of the Core oligosaccharides of Lipooligosaccharides from campylobacter jejuni: a putative cause of Guillain-Barre syndrome. Chemistry 25(3):796–805. https://doi.org/10.1002/chem.201804862

    Article  Google Scholar 

  15. Kanagawa M, Kobayashi K, Tajiri M, Manya H, Kuga A, Yamaguchi Y, Akasaka-Manya K, Furukawa JI, Mizuno M, Kawakami H, Shinohara Y, Wada Y, Endo T, Toda T (2016) Identification of a post-translational modification with Ribitol-phosphate and its defect in muscular dystrophy. Cell Rep 14(9):2209–2223. https://doi.org/10.1016/j.celrep.2016.02.017

    Article  Google Scholar 

  16. Manya H, Yamaguchi Y, Kanagawa M, Kobayashi K, Tajiri M, Akasaka-Manya K, Kawakami H, Mizuno M, Wada Y, Toda T, Endo T (2016) The muscular dystrophy gene TMEM5 encodes a Ribitol beta1,4-Xylosyltransferase required for the functional glycosylation of Dystroglycan. J Biol Chem 291(47):24618–24627. https://doi.org/10.1074/jbc.M116.751917

    Article  Google Scholar 

  17. Kanie Y, Yamaguchi Y, Hayashi A, Uzawa J, Hatakeyama M, Hidaka Y, Toda N, Nakamura S, Kanie O (2019) Structural analysis of a novel lipooligosaccharide (LOS) from Rhodobacter azotoformans. Carbohydr Res 473:104–114. https://doi.org/10.1016/j.carres.2018.12.018

    Article  Google Scholar 

  18. Akiyama H, Nakajima K, Itoh Y, Sayano T, Ohashi Y, Yamaguchi Y, Greimel P, Hirabayashi Y (2016) Aglycon diversity of brain sterylglucosides: structure determination of cholesteryl- and sitosterylglucoside. J Lipid Res 57(11):2061–2072. https://doi.org/10.1194/jlr.M071480

    Article  Google Scholar 

  19. Akiyama H, Ide M, Nagatsuka Y, Sayano T, Nakanishi E, Uemura N, Yuyama K, Yamaguchi Y, Kamiguchi H, Takahashi R, Aerts J, Greimel P, Hirabayashi Y (2020) Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol. J Biol Chem 295(16):5257–5277. https://doi.org/10.1074/jbc.RA119.012502

    Article  Google Scholar 

  20. Takahashi N, Tsukamoto Y, Shiosaka S, Kishi T, Hakoshima T, Arata Y, Yamaguchi Y, Kato K, Shimada I (1999) N-glycan structures of murine hippocampus serine protease, neuropsin, produced in Trichoplusia ni cells. Glycoconj J 16(8):405–414. https://doi.org/10.1023/a:1007082612019

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 19H03362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamaguchi, Y. (2023). NMR Analysis of Mammalian Glycolipids. In: Kabayama, K., Inokuchi, Ji. (eds) Glycolipids. Methods in Molecular Biology, vol 2613. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2910-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2910-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2909-3

  • Online ISBN: 978-1-0716-2910-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics