Skip to main content

Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2628))

Abstract

One of the cornerstones of effective cancer treatment is early diagnosis. In this context, the identification of proteins that can serve as cancer biomarkers in bodily fluids (“liquid biopsies”) has gained attention over the last decade. Plasma and serum fractions of blood are the most commonly investigated sources of potential cancer liquid biopsy biomarkers. However, the high complexity and dynamic range typical of these fluids hinders the sensitivity of protein detection by the most commonly used mass spectrometry technology (data-dependent acquisition mass spectrometry (DDA-MS)). Recently, data-independent acquisition mass spectrometry (DIA-MS) techniques have overcome the limitations of DDA-MS, increasing sensitivity and proteome coverage. In addition to DIA-MS, isolating extracellular vesicles (EVs) can help to increase the depth of serum/plasma proteome coverage by improving the identification of low-abundance proteins which are a potential treasure trove of diagnostic molecules. EVs, the nano-sized membrane-enclosed vesicles present in most bodily fluids, contain proteins which may serve as potential biomarkers for various cancers. Here, we describe a detailed protocol that combines DIA-MS and EV methodologies for discovering and validating early cancer biomarkers using blood serum. The pipeline includes size exclusion chromatography methods to isolate serum-derived extracellular vesicles and subsequent EV sample preparation for liquid chromatography and mass spectrometry analysis. Procedures for spectral library generation by DDA-MS incorporate methods for off-line peptide separation by microflow HPLC with automated fraction concatenation. Analysis of the samples by DIA-MS includes recommended protocols for data processing and statistical methods. This pipeline will provide a guide to discovering and validating EV-associated proteins that can serve as sensitive and specific biomarkers for early cancer detection and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Printz C (2017) Cancer death rate declines 25% after 1991 peak. Cancer 123(14):2593

    Article  Google Scholar 

  2. Momenimovahed Z, Momenimovahed S, Allahqoli L, Salehiniya H (2022) Factors related to the delay in diagnosis of breast cancer in the word: a systematic review. Indian J Gynecol Oncol 20(3):1–21

    Google Scholar 

  3. Campos CD, Jackson JM, Witek MA, Soper SA (2018) Molecular profiling of liquid biopsy samples for precision medicine. Cancer J 24(2):93

    Article  CAS  Google Scholar 

  4. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983

    Article  CAS  Google Scholar 

  5. Füzéry AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10(1):1–14

    Article  Google Scholar 

  6. Menon U, Ryan A, Kalsi J, Gentry-Maharaj A, Dawnay A, Habib M et al (2015) Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the United Kingdom Collaborative Trial of Ovarian Cancer Screening. J Clin Oncol 33(18):2062

    Article  Google Scholar 

  7. Liu Y, Huettenhain R, Collins B, Aebersold R (2013) Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn 13(8):811–825

    Article  CAS  Google Scholar 

  8. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  Google Scholar 

  9. Lescuyer P, Hochstrasser D, Rabilloud T (2007) How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res 6(9):3371–3376

    Article  CAS  Google Scholar 

  10. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28(7):710–721

    Article  CAS  Google Scholar 

  11. Sajic T, Liu Y, Aebersold R (2015) Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. Proteomics Clin Appl 9(3–4):307–321

    Article  CAS  Google Scholar 

  12. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC−MS/MS. J Proteome Res 10(4):1785–1793

    Article  CAS  Google Scholar 

  13. Kalli A, Smith GT, Sweredoski MJ, Hess S (2013) Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J Proteome Res 12(7):3071–3086

    Article  CAS  Google Scholar 

  14. Elias JE, Haas W, Faherty BK, Gygi SP (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2(9):667–675

    Article  CAS  Google Scholar 

  15. Sivanich MK, Gu TJ, Tabang DN, Li L (2022) Recent advances in isobaric labeling and applications in quantitative proteomics. Proteomics 2100256:2100256

    Article  Google Scholar 

  16. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897

    Article  CAS  Google Scholar 

  17. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8(11):5347–5355

    Article  CAS  Google Scholar 

  18. Law KP, Lim YP (2013) Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev Proteomics 10(6):551–566

    Article  CAS  Google Scholar 

  19. Chapman JD, Goodlett DR, Masselon CD (2014) Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev 33(6):452–470

    Article  CAS  Google Scholar 

  20. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717

    Article  Google Scholar 

  21. Sato H, Inoue Y, Kawashima Y, Nakajima D, Ishikawa M, Konno R et al (2022) In-depth serum proteomics by DIA-MS with in silico spectral libraries reveals dynamics during the active phase of systemic juvenile idiopathic arthritis. ACS omega 7(8):7012–7023

    Article  CAS  Google Scholar 

  22. Reale A, Khong T, Xu R, Chen M, Mithraprabhu S, Bingham N et al (2021) Human plasma extracellular vesicle isolation and proteomic characterization for the optimization of liquid biopsy in multiple myeloma. In: Posch A (ed) Proteomic profiling. Springer, pp 151–191

    Chapter  Google Scholar 

  23. Lee PY, Osman J, Low TY, Jamal R (2019) Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 11(19):1799–1812

    Article  CAS  Google Scholar 

  24. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478):eaau6977

    Article  CAS  Google Scholar 

  25. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797

    Article  Google Scholar 

  26. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654

    Article  CAS  Google Scholar 

  27. Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y et al (2020) Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 5(1):1–14

    CAS  Google Scholar 

  28. Chen I-H, Xue L, Hsu C-C, Paez JSP, Pan L, Andaluz H et al (2017) Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci 114(12):3175–3180

    Article  CAS  Google Scholar 

  29. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182

    Article  CAS  Google Scholar 

  30. Jalaludin I, Lubman DM, Kim J (2021) A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. Mass Spectrom Rev:e21749. https://doi.org/10.1002/mas.21749

  31. Boukouris S, Mathivanan S (2015) Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl 9(3–4):358–367

    Article  CAS  Google Scholar 

  32. Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J et al (2020) Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182(4):1044–61 e18

    Article  CAS  Google Scholar 

  33. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  Google Scholar 

  34. Espejo C, Wilson R, Pye RJ, Ratcliffe JC, Ruiz-Aravena M, Willms E et al (2022) Cathelicidin-3 associated with serum extracellular vesicles enables early diagnosis of a transmissible cancer. Front Immunol 13:858423

    Article  CAS  Google Scholar 

  35. Espejo C, Wilson R, Willms E, Ruiz-Aravena M, Pye RJ, Jones ME et al (2021) Extracellular vesicle proteomes of two transmissible cancers of Tasmanian devils reveal tenascin-C as a serum-based differential diagnostic biomarker. Cell Mol Life Sci 78:7537

    Article  CAS  Google Scholar 

  36. Espejo C, Patchett AL, Wilson R, Lyons AB, Woods GM (2022) Challenges of an emerging disease: the evolving approach to diagnosing devil facial tumour disease. Pathogens 11(1):27

    Article  CAS  Google Scholar 

  37. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740

    Article  CAS  Google Scholar 

  38. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  39. Palviainen M, Saraswat M, Varga Z, Kitka D, Neuvonen M, Puhka M et al (2020) Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—implications for biomarker discovery. PLoS One 15(8):e0236439

    Article  CAS  Google Scholar 

  40. Muller L, Hong C-S, Stolz DB, Watkins SC, Whiteside TL (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods 411:55–65

    Article  CAS  Google Scholar 

  41. Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C (2022) Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma–contributions of platelet extracellular vesicles in plasma samples. Journal of extracellular vesicles 11(5):e12213

    Article  CAS  Google Scholar 

  42. Bæk R, Søndergaard EK, Varming K, Jørgensen MM (2016) The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods 438:11–20

    Article  Google Scholar 

  43. Hughes CS, Moggridge S, Muller T, Sorensen PH, Morin GB, Krijgsveld J (2019) Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc 14(1):68–85

    Article  CAS  Google Scholar 

  44. Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Humana Press, Cancer systems biology, pp 133–148

    Google Scholar 

  45. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  Google Scholar 

  46. Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M (2020) DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 17(1):41–44

    Article  CAS  Google Scholar 

  47. Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng L-Y, Messner S et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues*[S]. Mol Cell Proteomics 14(5):1400–1410

    Article  CAS  Google Scholar 

  48. Lin Y, Qian F, Shen L, Chen F, Chen J, Shen B (2019) Computer-aided biomarker discovery for precision medicine: data resources, models and applications. Brief Bioinform 20(3):952–975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Espejo, C., Lyons, B., Woods, G.M., Wilson, R. (2023). Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics