Skip to main content

Swarming Motility Assays in Salmonella

  • Protocol
  • First Online:
Bacterial and Archaeal Motility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2646))

Abstract

Salmonella enterica has six subspecies, of which the subspecies enterica is the most important for human health. The dispersal and infectivity of this species are dependent upon flagella-driven motility. Two kinds of flagella-mediated movements have been described—swimming individually in bulk liquid and swarming collectively over a surface substrate. During swarming, the bacteria acquire a distinct physiology, the most significant consequence of which is acquisition of adaptive resistance to antibiotics. Described here are protocols to cultivate, verify, and study swimming and swarming motility in S. enterica, and an additional “border-crossing” assay, where cells “primed” to swarm are presented with an environmental challenge such as antibiotics to assess their propensity to handle the challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyata M, Robinson RC, Uyeda TQP et al (2020) Tree of motility – a proposed history of motility systems in the tree of life. Genes Cells 25:6–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    Article  CAS  PubMed  Google Scholar 

  3. Berg HC (2004) E. coli in motion, 1st edn. Springer-Verlag, New York

    Google Scholar 

  4. Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476

    Article  CAS  PubMed  Google Scholar 

  5. Duan Q, Zhou M, Zhu L et al (2013) Flagella and bacterial pathogenicity. J Microbiol 53:1–8

    Google Scholar 

  6. Chaban B, Hughes HV, Beeby M (2015) The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol 46:91–103

    Article  CAS  PubMed  Google Scholar 

  7. Haiko J, Westerlund-Wikstrom B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology (Basel) 2:1242–1267

    PubMed  Google Scholar 

  8. Nakamura S, Minamino T (2019) Flagella-driven motility of bacteria. Biomolecules 9:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  CAS  PubMed  Google Scholar 

  10. Xing J, Bai F, Berry R et al (2006) Torque–speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci 103:1260–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou J, Lloyd SA, Blair DF (1998) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci 95:6436–6441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukuoka H, Wada T, Kojima S et al (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 71:825–835

    Article  CAS  PubMed  Google Scholar 

  13. Brown MT, Delalez NJ, Armitage JP (2011) Protein dynamics and mechanisms controlling the rotational behaviour of the bacterial flagellar motor. Curr Opin Microbiol 14:734–740

    Article  CAS  PubMed  Google Scholar 

  14. Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larsen SH, Reader RW, Kort EN et al (1974) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77

    Article  CAS  PubMed  Google Scholar 

  16. Macnab RM (1977) Bacterial flagella rotating in bundles: a study in helical geometry. Proc Natl Acad Sci 74:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504

    Article  CAS  PubMed  Google Scholar 

  18. Macnab RM, Koshland DE Jr (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci 69:2509–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Article  CAS  PubMed  Google Scholar 

  20. Mesibov R, Adler J (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112:315–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Partridge JD, Harshey RM (2013) Swarming: flexible roaming plans. J Bacteriol 195:909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darnton NC, Turner L, Rojevsky S et al (2010) Dynamics of bacterial swarming. Biophys J 98:2082–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeckel H, Jelli E, Hartmann R et al (2019) Learning the space-time phase diagram of bacterial swarm expansion. Proc Natl Acad Sci 116:1489–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang HP, Be’er A, Florin EL et al (2010) Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci 107:13626–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  CAS  PubMed  Google Scholar 

  27. Partridge JD (2022) Surveying a swarm: experimental techniques to establish and examine bacterial collective motion. Appl Environ Microbiol 88:e0185321

    Article  PubMed  Google Scholar 

  28. Tian M, Zhang C, Zhang R et al (2021) Collective motion enhances chemotaxis in a two-dimensional bacterial swarm. Biophys J 120:1615–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Partridge JD, Nhu NTQ, Dufour YS et al (2019) Escherichia coli remodels the chemotaxis pathway for swarming. mBio 10:e00316-19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Partridge JD, Nhu NTQ, Dufour YS et al (2020) Tumble suppression is a conserved feature of swarming motility. mBio 11:e01189-20

    Article  PubMed  PubMed Central  Google Scholar 

  31. Butler MT, Wang Q, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci 107:3776–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhattacharyya S, Walker DM, Harshey RM (2020) Dead cells release a “necrosignal” that activates antibiotic survival pathways in bacterial swarms. Nat Commun 11:4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harshey RM, Partridge JD (2015) Shelter in a swarm. J Mol Biol 427:3683–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morales-Soto N, Anyan ME, Mattingly AE et al (2015) Preparation, imaging, and quantification of bacterial surface motility assays. J Vis Exp 98:52338

    Google Scholar 

  35. Partridge JD, Harshey RM (2020) Investigating flagella-driven motility in Escherichia coli by applying three established techniques in a series. J Vis Exp 159:61364

    Google Scholar 

  36. Hölscher T, Dragoš A, Gallegos-Monterrosa R et al (2016) Monitoring spatial segregation in surface colonizing microbial populations. J Vis Exp 116:54752

    Google Scholar 

  37. Pearson MM (2019) Methods for studying swarming and swimming motility. Methods Mol Biol 2021:15–25

    Article  CAS  PubMed  Google Scholar 

  38. Bru JL, Siryaporn A, Høyland-Kroghsbo NM (2020) Time-lapse imaging of bacterial swarms and the collective stress response. J Vis Exp 159:60915

    Google Scholar 

  39. Heering J, Alvarado A, Ringgaard S (2017) Induction of cellular differentiation and single cell imaging of Vibrio parahaemolyticus swimmer and swarmer cells. J Vis Exp 123:55842

    Google Scholar 

  40. Sharp PM (1991) Determinants of DNA sequence divergence between Escherichia coli and Salmonella typhimurium: codon usage, map position, and concerted evolution. J Mol Evol 33:23–33

    Article  CAS  PubMed  Google Scholar 

  41. Partridge JD, Nieto V, Harshey RM (2015) A new player at the flagellar motor: FliL controls both motor output and bias. mBio 6:02367

    Article  Google Scholar 

  42. Harshey RM (2010) Swarming adventures. In: Maloy SM, Casadesus J, Hughes K (eds) The lure of bacterial genetics. American Society for Microbiology, Washington, DC, pp 163–171

    Google Scholar 

  43. Adler J (1969) Chemoreceptors in bacteria. Science 166:1588–1597

    Article  CAS  PubMed  Google Scholar 

  44. Hazelbauer GL (2012) Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol 66:285–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parkinson JS (2007) A “bucket of light” for viewing bacterial colonies in soft agar. Methods Enzymol 423:432–435

    Article  PubMed  Google Scholar 

  46. Hölscher T, Kovács ÁT (2017) Sliding on the surface: bacterial spreading without an active motor. Environ Microbiol 19:2537–2545

    Article  PubMed  Google Scholar 

  47. Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci 91:8631–8635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toguchi A, Siano M, Burkart M et al (2000) Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mattingly AE, Weaver AA, Dimkovikj A et al (2018) Assessing travel conditions: environmental and host influences on bacterial surface motility. J Bacteriol 200:e00014-18

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brown II, Häse CC (2001) Flagellum-independent surface migration of Vibrio cholerae and Escherichia coli. J Bacteriol 183:3784–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Copeland MF, Weibel DB (2009) Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter 5:1174–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Swiecicki JM, Sliusarenko O, Weibel DB (2013) From swimming to swarming: Escherichia coli cell motility in two-dimensions. Integr Biol (Camb) 5:1490–1494

    Article  PubMed  Google Scholar 

  53. Colin R, Drescher K, Sourjik V (2019) Chemotactic behaviour of Escherichia coli at high cell density. Nat Commun 10:5329

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Motility research in our lab is supported by grants from NIGMS (R35 GM118085) and NIAID (R21 AI158295).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan D. Partridge or Rasika M. Harshey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Partridge, J.D., Harshey, R.M. (2023). Swarming Motility Assays in Salmonella. In: Minamino, T., Miyata, M., Namba, K. (eds) Bacterial and Archaeal Motility. Methods in Molecular Biology, vol 2646. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3060-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3060-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3059-4

  • Online ISBN: 978-1-0716-3060-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics