Skip to main content

A Practical Guideline to Engineering Nonribosomal Peptide Synthetases

  • Protocol
  • First Online:
Non-Ribosomal Peptide Biosynthesis and Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2670))

Abstract

The bioengineering of nonribosomal peptide synthetases (NRPSs) is a rapidly developing field to access natural product derivatives and new-to-nature natural products like scaffolds with changed or improved properties. However, the rational (re-)design of these often gigantic assembly-line proteins is by no means trivial and needs in-depth insights into structural flexibility, inter-domain communication, and the role of proofreading by catalytic domains—so it is not surprising that most previous rational reprogramming efforts have been met with limited success. With this practical guide, the result of nearly one decade of NRPS engineering in the Bode lab, we provide valuable insights into the strategies we have developed during this time for the successful engineering and cloning of these fascinating molecular machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies J (2013) Specialized microbial metabolites: functions and origins. J Antibiot 66:361–364

    Article  CAS  Google Scholar 

  2. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803

    Article  CAS  PubMed  Google Scholar 

  3. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  Google Scholar 

  4. Lawson ADG, MacCoss M, Heer JP (2018) Importance of rigidity in designing small molecule drugs to tackle protein-protein interactions (PPIs) through stabilization of desired conformers. J Med Chem 61:4283–4289

    Article  CAS  PubMed  Google Scholar 

  5. Payne DJ, Gwynn MN, Holmes DJ et al (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  CAS  PubMed  Google Scholar 

  6. Hughes JP, Rees S, Kalindjian SB et al (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed 53:8840–8869

    Article  CAS  Google Scholar 

  8. Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed 56:3770–3821

    Article  Google Scholar 

  9. Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72

    Article  CAS  PubMed  Google Scholar 

  10. Brown AS, Calcott MJ, Owen JG et al (2018) Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep 35:1210–1228

    Article  CAS  PubMed  Google Scholar 

  11. Calcott MJ, Ackerley DF (2014) Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products. Biotechnol Lett 36:2407–2416

    Article  CAS  PubMed  Google Scholar 

  12. Bozhüyük KAJ, Fleischhacker F, Linck A et al (2018) De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem 10:275–281

    Article  PubMed  Google Scholar 

  13. Bozhüyük KAJ, Linck A, Tietze A et al (2019) Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat Chem 11:653–661

    Article  PubMed  Google Scholar 

  14. Abbood N, Duy Vo T, Watzel J et al (2022) Type S non-ribosomal peptide synthetases for the rapid generation of tailormade peptide libraries. Chemistry 28:e202103963

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bozhüyük KAJ, Watzel J, Abbood N et al (2021) Synthetic zippers as an enabling tool for engineering of non-ribosomal peptide synthetases. Angew Chem Int Ed 60:17531–17538

    Article  Google Scholar 

  16. Rausch C, Hoof I, Weber T et al (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tanovic A, Samel SA, Essen LO et al (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663

    Article  CAS  PubMed  Google Scholar 

  18. Nollmann FI, Dauth C, Mulley G et al (2015) Insect-specific production of new GameXPeptides in photorhabdus luminescens TTO1, widespread natural products in Entomopathogenic bacteria. Chembiochem 16:205–208

    Article  CAS  PubMed  Google Scholar 

  19. Calcott MJ, Owen JG, Ackerley DF (2020) Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nat Commun 11:4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thompson KE, Bashor CJ, Lim WA et al (2012) SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth Biol 1:118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Durfee T, Nelson R, Baldwin S et al (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  PubMed  Google Scholar 

  23. Gaitatzis N, Hans A, Müller R et al (2001) The MtaA gene of the myxothiazol biosynthetic gene cluster from Stigmatella aurantiaca DW4/3-1 encodes a phosphopantetheinyl transferase that activates polyketide synthases and polypeptide synthetases. J Biochem 129:119–124

    Article  CAS  PubMed  Google Scholar 

  24. Fu C, Donovan WP, Shikapwashya-Hasser O et al (2014) Hot fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One 9:115318

    Article  Google Scholar 

  25. Bozhüyük KAJ, Präve L, Kegler C, Kaiser S, Shi Y-N, Kuttenlochner W, Schenk L, Mohiuddin TM, Groll M, Hochberg GKA, Bode HB (2022) Evolution Inspired Engineering of Megasynthetases. https://doi.org/10.1101/2022.12.02.518901

  26. Abbood N, Effert J, Bozhueyuek KAJ, Bode HB (2023) Guidelines for Optimizing Type S Non-Ribosomal Peptide Synthetases. https://doi.org/10.1101/2023.03.21.533600

Download references

Acknowledgments

The authors are grateful to all current and past members from the Bode lab being involved in optimizing the NRPS engineering rules and protocols. Work in the Bode lab was supported by an ERC Advanced Grant (835108) and the LOEWE TBG research center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenan A. J. Bozhueyuek or Helge B. Bode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abbood, N., Präve, L., Bozhueyuek, K.A.J., Bode, H.B. (2023). A Practical Guideline to Engineering Nonribosomal Peptide Synthetases. In: Burkart, M., Ishikawa, F. (eds) Non-Ribosomal Peptide Biosynthesis and Engineering. Methods in Molecular Biology, vol 2670. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3214-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3214-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3213-0

  • Online ISBN: 978-1-0716-3214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics