Skip to main content

Computational Modeling of Phosphodiesterase Inhibitors as Anti-Alzheimer Agents

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 203))

  • 231 Accesses

Abstract

Neurodegenerative diseases are pathological disorders inducing a gradual loss of neuronal functionality presenting a multifactorial character. Among them, Alzheimer’s disease (AD) causes the most well-known type of dementia and one of the major representatives. Due to the multifactorial etiology of AD, pleiotropic treatments are getting increasing importance. Phosphodiesterases (PDEs) are treated as molecular targets for many pathological situations. Neurodegenerative manifestations are among them. Regulation of the concentration of cAMP and/or cGMP is related to the inhibition of PDEs located in the human brain. In this chapter, we will discuss the results of computational modeling studies on PDE inhibitors as anti-Alzheimer agents. Hydrogen bonds, π–π stacking, and volume are important for the interaction of the molecules with the catalytic site of PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jabir NR, Rehman MT, Alsolami K, Shakil S, Zughaibi TA, Alserihi RF et al (2021) Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: in pursuit of Alzheimer’s treatment. Ann Med 53(1):2332–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer’s association (USA) (2022) Alzheimer’s disease facts and figures 2022

    Google Scholar 

  3. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules (Basel, Switzerland). NLM (Medline) 25:5789

    Article  CAS  Google Scholar 

  4. Fedele E, Ricciarelli R (2021) Memory enhancers for Alzheimer’s dementia: focus on cgmp. Pharmaceuticals. MDPI AG 14:1–14

    Google Scholar 

  5. Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA et al (2009) Lipopolysaccharide alters the blood-brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 23(4):507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sayyah M, Javad-Pour M, Ghazi-Khansari M (2003) The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience 122(4):1073–1080

    Article  CAS  PubMed  Google Scholar 

  7. Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease (review). Biomed Rep. Spandidos Publications 4:519–522

    Article  CAS  Google Scholar 

  8. Birks JS, Harvey RJ (2018) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database of Syst Rev. John Wiley and Sons Ltd 2018

    Google Scholar 

  9. Evans GJ (2009) Rivastigmine for Alzheimer’s disease (review) [Internet]. Available from: http://www.thecochranelibrary.com

  10. Razay G, Wilcock GK (2008) Galantamine in Alzheimer’s disease. Expert Rev Neurotherap. 8:9–17

    Article  CAS  Google Scholar 

  11. Robinson DM, Keating GM, Schmitt FA, van Dyck CH, Wenk GL, Wimo A, ADIS Drug Evaluation (2006) Memantine: a review of its use in Alzheimer’s disease. Drugs 66:1515–1534

    Article  CAS  PubMed  Google Scholar 

  12. Wang P, Guan PP, Wang T, Yu X, Guo JJ, Wang ZY (2014) Aggravation of Alzheimer’s disease due to the COX-2-mediated reciprocal regulation of IL-1β and Aβ between glial and neuron cells. Aging Cell 13(4):605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luth HJ, Munch G, Arendt T (2002) Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res 953:135–143

    Article  PubMed  Google Scholar 

  14. Kalra J, Kumar P, Majeed ABA, Prakash A (2016) Modulation of LOX and COX pathways via inhibition of amyloidogenesis contributes to mitoprotection against β-amyloid oligomer-induced toxicity in an animal model of Alzheimer’s disease in rats. Pharmacol Biochem Behav 146–147:1–12

    Article  PubMed  Google Scholar 

  15. Gourmaud S, Paquet C, Dumurgier J, Pace C, Bouras C, Gray F et al (2015) Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline. J Psychiatry Neurosci 40(3):151–161

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M et al (2019) Phosphodiesterase inhibitors say NO to Alzheimer’s disease. Food Chem Toxicol. Elsevier Ltd 134:110822

    Article  CAS  Google Scholar 

  17. Ibrahim MM, Gabr MT (2019) Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen Res. Wolters Kluwer Medknow Publications 2018:437–440

    Google Scholar 

  18. Delaby C, Gabelle A, Blum D, Schraen-Maschke S, Moulinier A, Boulanghien J et al (2015) Central nervous system and peripheral inflammatory processes in Alzheimer’s disease: Biomarker profiling approach. Front Neurol 6(Aug):181

    PubMed  PubMed Central  Google Scholar 

  19. Encyclopedia of Psychopharmacology (2010) Encyclopedia of psychopharmacology. Springer, Berlin, Heidelberg

    Google Scholar 

  20. Nehra A, Colreavy F, Khandheria BK, Chandrasekaran K (2001) Sildenafil citrate, a selective phosphodiesterase type 5 inhibitor: urologic and cardiovascular implications. World J Urol 19:40–45

    Article  CAS  PubMed  Google Scholar 

  21. Prieto-Martínez FD, López-López E, Eurídice Juárez-Mercado K, Medina-Franco JL (2019) Computational drug design methods—current and future perspectives. In: In Silico drug design. Elsevier, pp 19–44

    Chapter  Google Scholar 

  22. Schaduangrat N, Lampa S, Simeon S, Gleeson MP, Spjuth O, Nantasenamat C (2020) Towards reproducible computational drug discovery. J Cheminform. BioMed Central Ltd 12:1–30

    Google Scholar 

  23. Gaurav A, Xing M, Al-Nema M (2017) Computational approaches in the development of phosphodiesterase inhibitors. In: Quantitative structure-activity relationship. InTech

    Google Scholar 

  24. Sadek MS, Cachorro E, El-Armouche A, Kämmerer S (2020) Therapeutic implications for PDE2 and cGMP/CAMP mediated crosstalk in cardiovascular diseases. Int J Mol Sci. MDPI AG 21:1–30

    Google Scholar 

  25. Jiang MY, Han C, Zhang C, Zhou Q, Zhang B, Le ML et al (2021) Discovery of effective phosphodiesterase 2 inhibitors with antioxidant activities for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 41:128016

    Article  CAS  PubMed  Google Scholar 

  26. Rombouts FJR, Tresadern G, Buijnsters P, Langlois X, Tovar F, Steinbrecher TB et al (2015) Pyrido[4,3- e ][1,2,4]triazolo[4,3- a ]pyrazines as selective, brain penetrant phosphodiesterase 2 (PDE2) inhibitors. ACS Med Chem Lett 6(3):282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang C, Feng LJ, Huang Y, Wu D, Li Z, Zhou Q et al (2017) Discovery of novel phosphodiesterase-2A inhibitors by structure-based virtual screening, structural optimization, and bioassay. J Chem Inf Model 57(2):355–364

    Article  PubMed  Google Scholar 

  28. Li H, Zuo J, Tang W (2018) Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. Frontiers Media S.A. 9:1048

    CAS  Google Scholar 

  29. Huang H, Hong Q, Tan HL, Xiao CR, Gao Y (2016) Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells. Acta Pharmacol Sin 37(12):1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quimque MT, Notarte KI, Letada A, Fernandez RA, Pilapil DY, Pueblos KR et al (2021) Potential cancer- and Alzheimer’s disease-targeting phosphodiesterase inhibitors from Uvaria alba: insights from in vitro and consensus virtual screening. ACS Omega 6(12):8403–8417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guariento S, Bruno O, Fossa P, Cichero E (2016) New insights into PDE4B inhibitor selectivity: CoMFA analyses and molecular docking studies. Mol Divers 20(1):77–92

    Article  CAS  PubMed  Google Scholar 

  32. Vignozzi L, Gacci M, Cellai I, Morelli A, Maneschi E, Comeglio P et al (2013) PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS. Prostate 73(13):1391–1402

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed WS, Geethakumari AM, Biswas KH (2021) Phosphodiesterase 5 (PDE5): structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother. Elsevier Masson s.r.l. 134:111128

    Article  CAS  Google Scholar 

  34. dos Santos MM, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB (2020) Identification of new targets and the virtual screening of lignans against Alzheimer’s disease. Oxidative Med Cell Longev 2020:3098673

    Google Scholar 

  35. Azam F, Amer AM, Rabulifa A, Elzwawi MM (2014) Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: a computational investigation. Drug Des Devel Ther 8:2045–2059

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A (2020) Therapeutic potential of phosphodiesterase inhibitors against neurodegeneration: the perspective of the medicinal chemist. ACS Chem Neurosci. American Chemical Society 11:1726–1739

    Article  CAS  Google Scholar 

  37. Su T, Zhang T, Xie S, Yan J, Wu Y, Li X et al (2016) Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer’s disease. Sci Rep 6:1–4

    CAS  Google Scholar 

  38. Fiorito J, Vendome J, Saeed F, Staniszewski A, Zhang H, Yan S et al (2017) Identification of a novel 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine analogue as a potent phosphodiesterase 5 inhibitor with improved aqueous solubility for the treatment of Alzheimer’s disease. J Med Chem 60(21):8858–8875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sivakumar D, Mudedla SK, Jang S, Kim H, Park H, Choi YW et al (2021) Computational study on selective pde9 inhibitors on pde9-mg/mg, pde9-zn/mg, and pde9-zn/zn systems. Biomolecules 11(5):709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang C, Zhou Q, Wu XN, Huang YD, Zhou J, Lai Z et al (2018) Discovery of novel PDE9A inhibitors with antioxidant activities for treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 33(1):260–270

    Article  CAS  PubMed  Google Scholar 

  41. Meng F, Hou J, Shao YX, Wu PY, Huang M, Zhu X et al (2012) Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J Med Chem 55(19):8549–8558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Z, Lu X, Feng LJ, Gu Y, Li X, Wu Y et al (2015) Molecular dynamics-based discovery of novel phosphodiesterase-9A inhibitors with non-pyrazolopyrimidinone scaffolds. Mol BioSyst 11(1):115–125

    Article  CAS  PubMed  Google Scholar 

  43. Tan C, Wu Y, Shao Y, Luo H, Zheng X, Wang L (2017) Docking-based 3D-QSAR studies of phosphodiesterase 9A inhibitors. Lett Drug Des Discov 14(9):986–998

    Article  CAS  Google Scholar 

  44. Menniti FS, Chappie TA, Schmidt CJ (2021) PDE10A Inhibitors—clinical failure or window into antipsychotic drug action? Front Neurosci. Frontiers Media S.A. 14:600178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Hadjipavlou-Litina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsopka, IC., Hadjipavlou-Litina, D. (2023). Computational Modeling of Phosphodiesterase Inhibitors as Anti-Alzheimer Agents. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3311-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3311-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3310-6

  • Online ISBN: 978-1-0716-3311-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics