Skip to main content

Methodological Advances in Protein NMR

  • Chapter

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

Since the first experimental observation of nuclear magnetic resonance (NMR) in bulk matter more than 45 years ago (Bloch et al., 1946; Purcell et al., 1946), its history has been punctuated by a series of revolutionary advances that have greatly expanded its horizons. Indeed, methodological and instrumental developments witnessed over the past two decades have turned NMR into the most diverse spectroscopic tool currently available. Applications vary from exploration of natural resources and medical imaging to determination of the three-dimensional structure of biologically important macromolecules (Wüthrich, 1986; Kaptein et al., 1988; Bax, 1989; Clore and Gronenborn, 1989; Markley, 1989; Wüthrich, 1989; Wagner et al., 1992). The present chapter focuses primarily on the methodological advances in this latter application, particularly as they relate to the study of proteins in solution.

Adapted from Bax, A. and Grzesiek, S., Accounts of Chemical Research (in press).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrowsmith, C. H., Pachter, R., Altman, R. B., Iyer, S. B. and Jardetzky, O. (1990). Sequence-specific 1H NMR assignments and secondary structure in solution of Escherichia coli trp repressor. Biochemistry, 29, 6332–6341

    Article  Google Scholar 

  • Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. and Bax, A. (1992). Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochemistry, 31, 5269–5278

    Article  Google Scholar 

  • Bax A. (1989). Two-dimensional NMR and protein structure. Ann. Rev. Biochem., 58, 223–256

    Article  Google Scholar 

  • Bax, A., Ikura, M., Kay, L. E., Barbato, G. and Spera, S. (1991). Multi-dimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination. In Protein Conformation 1991. Wiley, New York (Ciba Foundation Symposium 161), pp. 108–135

    Google Scholar 

  • Bax, A., Max, D. and Zax, D. (1992). Measurement of long-range 13C-13C J couplings in a 20-kDa protein-peptide complex. J. Am. Chem. Soc., 114, 6923–6925

    Article  Google Scholar 

  • Bax, A. and Pochapsky, S. S. (1992). Optimized recording of heteronuclear multi-dimensional NMR spectra using pulsed field gradients. J. Magn. Reson., 99, 638–643

    Google Scholar 

  • Bloch, F., Hansen, W. W. and Packard, M. (1946). Nuclear induction. Phys. Rev., 69, 127

    Article  Google Scholar 

  • Boucher, W., Laue, E. D., Campbell-Burk, S. and Domaille, P. J. (1992). Four-dimensional heteronuclear triple resonance NMR methods for the assignment of backbone nuclei in proteins. J. Am. Chem. Soc., 114, 2262–2264

    Article  Google Scholar 

  • Bystrov, V. F. (1976). Spin-spin coupling and the conformational states of peptide systems. Progr. Nucl. Magn. Reson. Spectrosc., 10, 41–81

    Article  Google Scholar 

  • Clore, G. M. and Gronenborn, A. M. (1989). Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. CRC Crit. Rev. Biochem. Mol. Biol., 24, 479–564

    Article  Google Scholar 

  • Clore, G. M. and Gronenborn, A. M. (1991). Applications of three- and four-dimensional NMR spectroscopy to protein structure determination. Progr. NMR Spectrosc., 23, 43–92

    Article  Google Scholar 

  • Clore, G. M., Kay, L. E., Bax, A. and Gronenborn, A. M. (1991). Four-dimensional 13C/13C-edited nuclear Overhauser enhancement spectroscopy of a protein in solution: Application to interleukin-1β. Biochemistry, 30, 12–18

    Article  Google Scholar 

  • Clubb, R. T., Thanabal, V. and Wagner, G. (1992). A constant-time three-dimensional triple resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C chemical shifts in 15N-13C labeled proteins. J. Magn. Reson., 97, 213–217

    Google Scholar 

  • Davis, A. L., Boelens, R. and Kaptein, R. (1992). Rapid acquisition of three-dimensional triple-resonance experiments using pulsed field gradient techniques. J. Biomol. NMR, 2, 395–400

    Article  Google Scholar 

  • Ernst, R. R. (1966). Sensitivity enhancement in magnetic resonance. Adv. Magn. Reson., 2, 1–137

    Article  Google Scholar 

  • Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford

    Google Scholar 

  • Fesik, S. W. and Zuiderweg, E. R. P. (1988). Heteronuclear three-dimensional NMR spectroscopy: a strategy for the simplification of homonuclear two-dimensional NMR spectra. J. Magn. Reson., 78, 588–593

    Google Scholar 

  • Griesinger, C., Sørensen, O. W. and Ernst, R. R. (1989). Three-dimensional Fourier spectroscopy. Application to high-resolution NMR. J. Magn. Reson., 84, 14–63

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992a). Improved 3D triple resonance techniques applied to a 31 kDa protein. J. Magn. Reson., 96, 432–440

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b). Correlating backbone amide and sidechain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc., 114, 6291–6293

    Article  Google Scholar 

  • Grzesiek, S. and Bax, A. (1992c). An efficient experiment for sequential back-bone assignment of medium-sized isotopically enriched proteins. J. Magn. Reson., 99, 201–207

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993). Amino acid type determination in the sequential assignment process of uniformly 13C/15N-enriched proteins. J. Biomol. NMR, 3, 185–204

    Google Scholar 

  • Grzesiek, S., Döbeli, H., Gentz, R., Garotta, G., Labhardt, A. M. and Bax, A. (1992). 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-γ. Biochemistry, 31, 8180–8190

    Article  Google Scholar 

  • Jeener, J. (1971). Unpublished lecture, Ampere Summer School, Basko Polje, Yugoslavia

    Google Scholar 

  • Ikura, M., Kay, L. E. and Bax, A. (1990). A novel approach for sequential assignment of 1H, 13C and 15N spectra of larger proteins: Heteronuclear triple resonance NMR spectroscopy. Application to calmodulin. Biochemistry, 29, 4659–4667

    Article  Google Scholar 

  • Kaptein, R., Boelens, R., Scheek, R. and van Gunsteren, W. F. (1988). Protein structures from NMR. Biochemistry, 27, 5389–5395

    Article  Google Scholar 

  • Kay, L. E., Bull, T. E., Nicholson, L. K., Griesinger, C., Schwalbe, H., Bax, A. and Torchia, D. A. (1992). Measurement of heteronuclear transverse relaxation times in AX3 spin systems via polarization transfer techniques. J. Magn. Reson., 100, 538–558

    Google Scholar 

  • Kay, L. E., Clore, G. M., Bax, A. and Gronenborn, A. M. (1990). Four-dimensional heteronuclear triple resonance NMR spectroscopy of interleukin-1β in solution. Science, 249, 411–414

    Article  Google Scholar 

  • Kay, L. E., Torchia, D. A. and Bax, A. (1989). Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy. Application to staphylococcal nuclease. Biochemistry, 28, 8972–8979

    Article  Google Scholar 

  • LeMaster, D. M. and Richards, F. M. (1988). NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteration. Biochemistry, 27, 142–150

    Article  Google Scholar 

  • Lipari, G. and Szabo, A. (1982). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. J. Am. Chem. Soc., 104, 4546–4558

    Article  Google Scholar 

  • Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M. and Clore, G. M. (1989a). Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins using three-dimensional homonuclear Hartmann-Hahn and nuclear Overhauser 1H-15N heteronuclear multiple quantum coherence spectroscopy. Biochemistry, 29, 6150–6156

    Article  Google Scholar 

  • Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. and Bax, A. (1989b). Three-dimensional heteronuclear NMR of 15N labelled proteins. J. Am. Chem. Soc., 111, 1515–1517

    Article  Google Scholar 

  • Markley, J. L. (1989). Two-dimensional nuclear magnetic resonance spectroscopy of proteins: An overview. Methods Enzymol., 176, 12–64

    Article  Google Scholar 

  • Oh, B. H., Westler, W. M., Derba, P. and Markley, J. L. (1988). Protein carbon-13 systems by a single two-dimensional nuclear magnetic resonance experiment. Science, 240, 908–911

    Article  Google Scholar 

  • Ösapay, K. and Case, D. A. (1991). A new analysis of proton chemical shifts in proteins. J. Am. Chem. Soc., 113, 9436–9444

    Article  Google Scholar 

  • Oschkinat, H., Griesinger, C., Kraulis, P. J., Sørensen, O. W., Ernst, R. R., Gronenborn, A. M. and Clore, G. M. (1988). Three-dimensional NMR spectroscopy of a protein in solution. Nature, 332, 374–376

    Article  Google Scholar 

  • Palmer, A. G. III, Cavanagh, J., Byrd, R. A. and Rance, M. (1992a). Sensitivity improvement in three-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson., 96, 416–424

    Google Scholar 

  • Palmer, A. G. III, Fairbrother, W. J., Cavanagh, J., Wright, P. E. and Rance, M. (1992b). Improved resolution in three-dimensional constant-time triple resonance NMR spectroscopy of proteins. J. Biomol. NMR, 2, 103–108

    Article  Google Scholar 

  • Purcell, E. M., Torrey, H. C. and Pound, R. V. (1946). Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37–38

    Article  Google Scholar 

  • Sørensen, O. W. (1990). Aspects and prospects of multidimensional time-domain spectroscopy. J. Magn. Reson., 89, 210–216

    Google Scholar 

  • Spera, S. and Bax, A. (1991). An empirical correlation between protein backbone conformation and Cα and Cβ chemical shifts. J. Am. Chem. Soc., 113, 5490–5492

    Article  Google Scholar 

  • Vuister, G. W., Boelens, R. and Kaptein, R. (1988). Non-selective three-dimensional NMR spectroscopy. The 3D NOE-HOHAHA experiment. J. Magn. Reson., 80, 176–185

    Google Scholar 

  • Vuister, G. W., Boelens, R., Kaptein, R., Hurd, R. E., John, B. and van Zijl, P. C. M. (1991). Gradient-enhanced HMQC and HSQC spectroscopy. Applications to 15N-labeled Mnt repressor. J. Am. Chem. Soc., 113, 9688–9690

    Article  Google Scholar 

  • Vuister, G. W., Delaglio, F. and Bax, A. (1992). An empirical correlation between 1 J CαHα and protein backbone conformation. J. Am. Chem. Soc., 114, 9674–9675

    Article  Google Scholar 

  • Wagner, G., Thanabal, V., Stockman, B. J., Peng, J. W., Nirmala, N. R., Hyberts, S. G., Goldberg, M. S., Detlefson, D. J., Clubb, R. T. and Adler, M. (1992). NMR studies of structure and dynamics of isotope enriched proteins. Biopolymers, 32, 381–390

    Article  Google Scholar 

  • Wishart, D. S., Sykes, B.D. and Richards, F.M. (1991). Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol., 222, 311–333

    Article  Google Scholar 

  • Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. Wiley, New York

    Google Scholar 

  • Wüthrich, K. (1989). The development of nuclear magnetic resonance spectroscopy as a technique for protein structure determination. Acc. Chem. Res., 22, 36–44

    Article  Google Scholar 

  • Zuiderweg, E.R.P., Petros, A.M., Fesik, S.W. and Olejniczak, E.T. (1991). Four-dimensional [13C, 1H, 13C, 1H] HMQC-NOE-HMQC NMR spectroscopy: resolving tertiary NOE distance constraints in the spectra of larger proteins. J. Am. Chem. Soc., 113, 370–372

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Bax, A., Grzesiek, S. (1993). Methodological Advances in Protein NMR. In: Clore, G.M., Gronenborn, A.M. (eds) NMR of Proteins. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12749-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12749-8_2

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12751-1

  • Online ISBN: 978-1-349-12749-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics