Skip to main content

Recent Advances And Future Prospective in Molecular Breeding of Cotton For Drought and Salinity Stress Tolerance

  • Chapter
Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops

Abstract

Fiber from cotton (Gossypium hirsutum and G. barbadense) is a major product in the world economy. It is a botanically unique plant as it is a perennial allotetraploid derived from diploid Gossypium species, one of which does not produce lint, which is grown as an annual row crop. Cotton is an especially appropriate system for research into the molecular basis of plant response to water deficit and salinity, as it originates from wild perennial plants adapted to semi-arid, sub-tropical environments which experienced periodic drought and temperature extremes that are associated with soils with high salt content. The current primary molecular breeding approaches include transgenic modification and quantitative trait mapping with marker-assisted selection. The preliminary work in QTL mapping for drought response and the relationships of the QTLs with the drought-associated measurements is developing a foundation for understanding and using the molecular basis of drought tolerance. QTL mapping for salt tolerance is not moving apace. Using and/or regulating transgene effects on the plant responses to drought and salinity has shown success and will continue to increase our understanding of the complexity of plant’s physiological pathways. Improvements in all areas of molecular breeding are almost certain, but the most effective improvements will come from exploiting our improved understanding of the genetic architecture

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo E, Fereres E (1993) Resistance to abiotic stresses. Chapman and Hall, London

    Google Scholar 

  • Adams KL, Wendel JF (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc 82:573–581

    Google Scholar 

  • Ahmad S, Khan N-u-I, Iqbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 1:715–719

    Article  Google Scholar 

  • Andries JA, Jones JE, Sloane LW, Marshall JG (1969) Effects of okra leaf shape on boll rot, yield, and other important characters of Upland cotton, Gossypium hirsutum L. Crop Sci 9:705–710

    Article  Google Scholar 

  • AOGTR (2002) The biology and ecology of cotton (Gossypium hirsutum) in Australia. Australian Office of the Gene Technology Regulator, www.agbios.com/docroot/decdocs/06-059–003.pdf Cited 8 Oct 2006

    Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: Some new advances. Crit Rev Plant Sci 21:1–30

    CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding 121:281–291

    Google Scholar 

  • Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5:493–503

    CAS  Google Scholar 

  • Baker DA (1984) Water relations. In: Wilkins MB (ed) Advanced plant physiology. Pitman, London; Marshfield, MA

    Google Scholar 

  • Balls WL (1912) The cotton plant in Egypt. Macmillan and Co. Ltd, London

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. CritRev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Basal H, Bebeli P, Smith CW, Thaxton P (2003) Root growth parameters of converted race stocks of upland cotton and two BC2F2 populations. Crop Sci 43:1983–1988

    Article  Google Scholar 

  • Basal H, Smith CW, Thaxton PS, Hemphill JK (2005) Seedling drought tolerance in upland cotton. Crop Sci 45:766–771

    Article  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury, MN

    Google Scholar 

  • Bhatti MA (2006) Genetics of salt tolerance in Gossypium hirsutum L. Dept of Plant Breeding and Genetics. University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Blum A (1988) Plant breeding for stress environment. CRC, Boca Raton, FL

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    PubMed  CAS  Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    CAS  Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear Restriction-Fragment-Length-Polymorphisms (RFLPs). Am J Botany 81:1309–1326

    Google Scholar 

  • Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137:81–94

    CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – From genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196

    CAS  Google Scholar 

  • Cowan IR (1986) Economics of carbon fixation in higher plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 133–170

    Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    PubMed  CAS  Google Scholar 

  • Da K, McCurdy J, Chee PW (2006) Development of plant regeneration and transformation protocols for elite Georgia cotton lines. Beltwide Cotton Conferences. National Cotton Council of America, San Antonio, Texas

    Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    PubMed  CAS  Google Scholar 

  • Desai A, Chee PW, Rong J, May OL, Paterson AH (2006) Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 49:336–345

    PubMed  Google Scholar 

  • Dumka D, Bednarz CW, Maw BW (2003) Delayed initiation of fruiting as a mechanism of improved drought avoidance in cotton. Crop Sci 44:528–534

    Google Scholar 

  • Ehleringer JR, Hall AE, Farquhar GD (eds) (1993) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, CA

    Google Scholar 

  • El Hafid R, Smith DH, Karrou M, Samir K (1998) Physiological attributes associated with early-season drought resistance in spring durum wheat cultivars. Can J Plant Sci 78:227–237

    Google Scholar 

  • Endrizzi JE, Turcotte EC, Kohel RJ (1984) Qualitative genetics, cytology, and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton. ASA/CSSA/SSSA, Madison, WI, pp 81–129

    Google Scholar 

  • Ennahli S, Earl HJ (2005) Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci 45:2374–2382

    CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex, England

    Google Scholar 

  • FAO (2000) Land resource potential and constraints at regional and country levels. Food and Agricultural Organization of the United Nations, Land and Water Development Division, Rome ftp://ftp.fao.org/agl/agll/docs/wsr.pdf Cited 8 Oct 2006

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:503–537

    CAS  Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. Aust J Agric Res 14:742–754

    Google Scholar 

  • Fryxell PA (1979) The natural history of the cotton tribe. Texas A&M University Press, College Station, TX

    Google Scholar 

  • He CX, Yan JQ, Shen GX, Fu LH, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

    PubMed  CAS  Google Scholar 

  • Heitholt JJ (1993) Cotton boll retention and its relationship to lint yield. Crop Sci 33:486–490

    Article  Google Scholar 

  • Hieter P, Boguski M (1997) Functional genomics: It’s all how you read it. Science 278:601–602

    PubMed  CAS  Google Scholar 

  • Hirt H, Shinozaki K (eds) (2004) Plant responses to abiotic stress. Springer, Berlin

    Google Scholar 

  • Huang B, Liu JY (2006) A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochem Biophys Res Commun 343:1023–1031

    PubMed  CAS  Google Scholar 

  • ICAC (2004) Cotton: Review of the World Situation. Vol 58 (2), November-December 2004 International Cotton Advisory Committee www.icac.org/cotton_info/publications/samples/reviews/erev_november_04.pdf Cited 8 Oct 2006

    Google Scholar 

  • ICAC (2006). Townsend, Terry, pers. comm.

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Phys Plant Mol Bio 47:377–403

    CAS  Google Scholar 

  • Jenks MA, Hasegawa PM (eds) (2005) Plant abiotic stress. Blackwell Publishing Ltd., Oxford; Ames, Iowa

    Google Scholar 

  • Jiang C, DelMonte TA, Paterson AH, Wright RJ, Woo SS (2000) QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theor Appl Genet 100:409

    CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Kerby TA, Buxton DR (1978) Effect of leaf shape and plant population on rate of fruiting position appearance in cotton. Agronomy J 70:535–538

    Article  Google Scholar 

  • Kerby TA, Buxton DR, Matsuda K (1980) Carbon source-sink relationships within narrow-row cotton canopies. Crop Sci 20:208–213

    Article  CAS  Google Scholar 

  • Kitajima S, Sato F (1999) Plant pathogenesis-related proteins: Molecular mechanisms of gene expression and protein function. J Biochem 125:1–8

    PubMed  CAS  Google Scholar 

  • Kohel RJ (1974) Influence of certain morphological characters on yield. Cotton Grow Rev 51:281–292

    Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    PubMed  CAS  Google Scholar 

  • Kramer PJ (1980) Drought, stress, and the origin of adaptation. John Wiley and Sons, New York

    Google Scholar 

  • Kumar A, Singh DP (1998) Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species. Ann Bot 81:413–420

    Google Scholar 

  • Kuznetsov VV, Rakitin VY, Zholkevich VN (1999) Effects of preliminary heat-shock treatment on accumulation of osmolytes and drought resistance in cotton plants during water deficiency. Physiologia Plantarum 107:399–406

    CAS  Google Scholar 

  • Lacape M, Nguyen TB, Hau B, Giband M (2003) Targeted introgression of cotton fiber quality QTLs using molecular markers. International Workshop on Marker Assisted Selection: A Fast Track to Increase Genetic Gain in Plant and Animal Breeding, Turin, Italy, October 17–18, 2003

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Le Houerou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185

    Google Scholar 

  • Leidi EO, Lopez M, Gorham J, Gutierrez JC (1999) Variation in carbon isotope discrimination and other traits related to drought tolerance in upland cotton cultivars under dryland conditions. Field Crops Res 61:109–123

    Google Scholar 

  • Lu YT, Dharmasiri MAN, Harrington HM (1995) Characterization of a cDNA encoding a novel heat-shock protein that binds to calmodulin. Plant Physiol 108:1197–1202

    PubMed  CAS  Google Scholar 

  • Lu ZM, Rundel PW, Zeiger E, Rasoul Sharifi M, Chen JW, Percy RG (1996) Genetic variation in carbon isotope discrimination and its relation to stomatal conductance in Pima cotton (Gossypium barbadense). Aust J Plant Physiol 23:127

    Article  CAS  Google Scholar 

  • Lu ZM, Zeiger E (1994) Selection for higher yields and heat-resistance in Pima cotton has caused genetically-determined changes in stomatal conductances. Physiologia Plantarum 92:273–278

    CAS  Google Scholar 

  • Lubbers EL, Chee PW, Paterson AH, Smith CW (2006) Fiber quality of a near-isogenic introgression line series from an Upland by Pima interspecific cross. Beltwide Cotton Conferences, San Antonio, Texas, January 3–6, 2006

    Google Scholar 

  • Ludlow MM, Santamaria JM, Fukai S (1990) Contribution of osmotic adjustment to grain-yield in Sorghum bicolor (L) Moench under water-limited conditions. II Water-stress after anthesis. Aust J Ag Res 41:67–78

    Google Scholar 

  • McKersie BD, Leshem YaY (1994) Stress and stress coping in cultivated plants. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    CAS  Google Scholar 

  • Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutrition 24:599–612

    CAS  Google Scholar 

  • Meredith WR (1984) Influence of leaf morphology on lint yield of cotton – enhancement by the sub okra trait. Crop Sci 24:855–857

    Article  Google Scholar 

  • Morgan JM (1995) Growth and yield of wheat lines with differing osmoregulative capacity at high soil-water deficit in seasons of varying evaporative demand. Field Crops Res 40:143–152

    Google Scholar 

  • NCC (2006) World Cotton Database National Cotton Council of America www.cotton.org/econ/cropinfo/cropdata/index.cfm Cited 8 Oct 2006

    Google Scholar 

  • Niles GA, Feaster CV (1984) Breeding. In: Kohel RJ, Lewis CF (eds) Cotton. ASA/CSSA/SSSA, Madison, WI, pp 202–229

    Google Scholar 

  • Paterson AH (1995) Molecular dissection of quantitative traits – Progress and prospects. Genome Res 5:321–333

    PubMed  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato – Comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Paterson AH, Deverna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Paterson AH, Jiang CX, Wright RJ, Saranga Y, Menz M (2003) QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384

    PubMed  CAS  Google Scholar 

  • Paterson AH, Lan TH, Reischmann KP, Chang C, Lin YR, Liu SC, Burow MD, Kowalski SP, Katsar CS, DelMonte TA, Feldmann KA, Schertz KF, Wendel JF (1996) Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet 14:380–382

    PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    PubMed  CAS  Google Scholar 

  • Percy RG, Wendel JF (1990) Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor Applied Genet 79:529–542

    Google Scholar 

  • Peterschmidt NA, Quisenberry JE (1982) Plant water status among cotton genotypes. Beltwide Cotton Prod Res Conf. National Cotton Council of America, Memphis, TN, pp 108–111

    Google Scholar 

  • Pettigrew WT, Heitholt JJ, Vaughn KC (1993) Gas-exchange differences and comparative anatomy among cotton leaf-type isolines. Crop Sci 33:1295–1299

    Article  Google Scholar 

  • Pettigrew WT, Meredith WR (1994) Leaf gas-exchange parameters vary among cotton genotypes. Crop Sci 34:700–705

    Article  Google Scholar 

  • Quisenberry JE, Jordan WR, Roark BA, Fryrear DW (1982) Exotic cottons as genetic sources for drought resistance. Crop Sci 21:889–895

    Article  Google Scholar 

  • Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum X Gossypium barbadense – Chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    PubMed  CAS  Google Scholar 

  • Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Management 80:197-211

    Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Rong JK, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao XP, Zhu LH, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    PubMed  CAS  Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Management 7:207–222

    Google Scholar 

  • Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci 21:943–946

    Article  Google Scholar 

  • Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: Monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J 15:821–833

    PubMed  CAS  Google Scholar 

  • Sanità di Toppi L, Pawlik-Skowrońska B (eds) (2003) Abiotic stresses in plants. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Saranga Y, Flash I, Yakir D (1998) Variation in water-use efficiency and its relation to carbon isotope ratio in cotton. Crop Sci 38:782–787

    Article  Google Scholar 

  • Saranga Y, Jiang CX, Wright RJ, Yakir D, Paterson AH (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27:263–277

    CAS  Google Scholar 

  • Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH (2001) Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11:1988–1995

    PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270:467–470

    PubMed  CAS  Google Scholar 

  • Schuepp PH (1993) Leaf boundary layers, Tansley Review No. 59. New Phytologist 125:477–507

    Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    PubMed  Google Scholar 

  • Shen X, Van Becelacre G, Kumar P, Davis RF, May OL, Chee P (2006) QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor Appl Genet DOI 10.1007/s00122-006-0401-4

    Google Scholar 

  • Showler AT (2002) Effects of water deficit stress, shade, weed competition, and kaolin particle film on selected foliar free amino acid accumulations in cotton, Gossypium hirsutum (L.). J Chem Ecol 28:631–651

    PubMed  CAS  Google Scholar 

  • Singh V, Pallaghy CK, Singh D (2006) Phosphorus nutrition and tolerance of cotton to water stress II. Water relations, free and bound water, and leaf expansion rate. Field Crops Res 96:199–206

    Google Scholar 

  • Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142:117–128

    Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    PubMed  CAS  Google Scholar 

  • Sotirios KA, Argyrokastritis A, Loukas M, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of stress related Heat shock protein calmodulin binding gene from cultivated cotton (Gossypium hirsutum L.). Euphytica 147:343–351

    CAS  Google Scholar 

  • Stanhill G (1992) The limits of water-use efficiency in agriculture. First Volcani International Symposium, Bet-Dagan, pp 45–45

    Google Scholar 

  • Stiller WN, Read JJ, Constable GA, Reid PE (2005) Selection for water use efficiency traits in a cotton breeding program: Cultivar differences. Crop Sci 45:1107–1113

    Google Scholar 

  • Stiller WN, Reid PE, Constable GA (2004) Maturity and leaf shape as traits influencing cotton cultivar adaptation to dryland conditions. Agronomy J 96:656–664

    Article  Google Scholar 

  • Stuber CW, Polacco M, Lynn M (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39:1571–1583

    Article  Google Scholar 

  • Tangpremsri T, Fukai S, Fischer KS (1995) Growth and yield of sorghum lines extracted from a population for differences in osmotic adjustment. Aust J Agric Res 46:61–74

    Google Scholar 

  • Tomkins JP, Peterson DG, Yang TJ, Main D, Wilkins TA, Paterson AH, Wing RA (2001) Development of genomic resources for cotton (Gossypium hirsutum L.): BAC library construction, preliminary STC analysis, and identification of clones associated with fiber development. Mol Breed 8:255–261

    CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    CAS  Google Scholar 

  • Ulloa M, Zeiger E, Lu Z, Cantrell RG, Percy RG (2000) QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci 4:10

    CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    PubMed  CAS  Google Scholar 

  • UNCTAD (2006) Cotton: Characteristics. United Nations Conference on Trade and Development http://r0.unctad.org/infocomm/anglais/cotton/sitemap.htm

    Google Scholar 

  • Underhill PA, Jin L, Lin AA, Mehdi SQ, Jenkins T, Vollrath D, Davis RW, CavalliSforza LL, Oefner PJ (1997) Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res 7:996–1005

    PubMed  CAS  Google Scholar 

  • Voloudakis AE, Kosmas SA, Tsakas S, Eliopoulos E, Loukas M, Kosmidou K (2002) Expression of selected drought-related genes and physiological response of Greek cotton varieties. Funct Plant Biol 29:1237–1245

    CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    PubMed  CAS  Google Scholar 

  • Ware JO (1951) Origin, rise, and development of American Upland cotton varieties and their status at present. University of Arkansas, College of Agriculture, Agric Experiment Sta, Fayetteville, AR

    Google Scholar 

  • Wells R, Meredith WR (1986) Normal vs. okra leaf yield interactions in cotton. 2. Analysis of vegetative and reproductive growth. Crop Sci 26:223–228

    Article  Google Scholar 

  • Wendel JF (1989) New world tetraploid cottons contain old world cytoplasm. Proceedings of the National Academy of Sciences of the United States of America 86:4132–4136

    Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot 79:1291–1310

    Google Scholar 

  • Wendel JF, Percy RG (1990) Allozyme diversity and introgression in the Galapagos Islands endemic Gossypium darwinii and its relationship to continental Gossypium barbadense. Biochem Syst Ecol 18:517–528

    Google Scholar 

  • Westengen O, Huaman Z, Heun M (2005) Genetic diversity and geographic pattern in early South American cotton domestication. Theor Appl Genet 110:392–402

    PubMed  Google Scholar 

  • Wilkinson JR, Spradling KD, Yoder DW, Pirtle IL, Pirtle RA (2005) Molecular cloning and analysis of a cotton gene cluster of two genes and two pseudogenes for the PR5 protein osmotin. Physiol Mol Plant Path 67:68–82

    CAS  Google Scholar 

  • Wilson ID, Barker GL, Edwards KJ (2003) Genotype to phenotype: A technological challenge. Ann Appl Biol 142:33–39

    CAS  Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KH, Paterson AH (1999) Molecular mapping of genes affecting pubescence of cotton. J Hered 90:215–219

    CAS  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    PubMed  CAS  Google Scholar 

  • Yakir D, Deniro MJ, Ephrath JE (1990) Effects of water-stress on oxygen, hydrogen and carbon isotope ratios in 2 species of cotton plants. Plant CellEnviron 13:949–955

    CAS  Google Scholar 

  • Yan JQ, He CX, Wang J, Mao ZH, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 UPlambda in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–014

    PubMed  CAS  Google Scholar 

  • Yan JQ, Wang J, Tissue D, Holaday AS, Allen R, Zhang H (2003) Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci 43:1477–1483

    Article  CAS  Google Scholar 

  • Yan JQ, Wang J, Zhang H (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J 29:193–202

    PubMed  CAS  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289

    PubMed  CAS  Google Scholar 

  • Zhang H, Wang J, Nickel U, Allen RD, Goodman HM (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol Biol 34:967–971

    PubMed  CAS  Google Scholar 

  • Zhang JX, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lubbers, E.L., Chee, P.W., Saranga, Y., Paterson, A.H. (2007). Recent Advances And Future Prospective in Molecular Breeding of Cotton For Drought and Salinity Stress Tolerance. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_31

Download citation

Publish with us

Policies and ethics