Skip to main content

Calcium Signalling and Calcium Transport in Bone Disease

  • Chapter
Calcium Signalling and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 45))

Abstract

Calcium transport and calcium signalling mechanisms in bone cells have, in many cases, been discovered by study of diseases with disordered bone metabolism. Calcium matrix deposition is driven primarily by phosphate production, and disorders in bone deposition include abnormalities in membrane phosphate transport such as in chondrocalcinosis, and defects in phosphate-producing enzymes such as in hypophosphatasia. Matrix removal is driven by acidification, which dissolves the mineral. Disorders in calcium removal from bone matrix by osteoclasts cause osteopetrosis. On the other hand, although bone is central to management of extracellular calcium, bone is not a major calcium sensing organ, although calcium sensing proteins are expressed in both osteoblasts and osteoclasts. Intracellular calcium signals are involved in secondary control including cellular motility and survival, but the relationship of these findings to specific diseases is not clear. Intracellular calcium signals may regulate the balance of cell survival versus proliferation or anabolic functional response as part of signalling cascades that integrate the response to primary signals via cell stretch, estrogen, tyrosine kinase, and tumor necrosis factor receptors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accardi A, Walden M, Nguitragool W, Jayaram H, Williams C, Miller C. 2005. Separate Ion Pathways in a Cl-/H+ Exchanger. J Gen Physiol 126:263–570.

    Article  Google Scholar 

  • Abu-Amer Y, Ross FP, Schlesinger P, Tondravi MM, Teitelbaum SL. 1997. Substrate recognition by osteoclast precursors induces {C}-src/microtubule association. J. Cell Biol 137:247–258.

    Article  PubMed  CAS  Google Scholar 

  • Adebanjo OA, Biswas G, Moonga BS, Anandatheerthavarada HK, Sun L, Bevis PJ, Sodam BR, Lai FA, Avadhani NG, Zaidi M. 2000. Novel biochemical and functional insights into nuclear Ca2+ transport through IP3Rs and RyRs in osteoblasts. Am J Physiol Renal Physiol 278: F784–91.

    PubMed  CAS  Google Scholar 

  • Adebanjo OA, Anandathreethavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJR, Huang CL-H, Epstein S, Lai FA, Avadhani NG, Zaidi M. 1999. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biology 7: 409–414.

    Google Scholar 

  • Adebanjo OA, Igietseme J, Huang CL-H, Zaidi, M. 1998a. The effect of extracellularly applied divalent cations on cytosolic Ca2+ in murine leydig cells: evidence for a Ca2+-sensing receptor. Journal of Physiology 513: 399–410.

    Article  CAS  Google Scholar 

  • Adebanjo OA, Moonga BS, Haddad JG, Huang CL-H, Zaidi, M. 1998b.. A possible new role for vitamin D-binding protein in osteoclast control. Inhibition of Ca2+ sensing at low physiological concentrations. Biochem Biophys Res Commun 249: 668–671.

    Article  CAS  Google Scholar 

  • Adebanjo OA, Moonga BS, Yamate T, Sun L, Minkin C, Abe E, Zaidi M. 1998c. Mode of action of interleukin-6 on mature osteoclasts. Novel interactions with extracellular Ca2+ sensing in the regulation of osteoclastic bone resorption. J Cell Biol 142: 1347–1356.

    Article  CAS  Google Scholar 

  • Adebanjo OA, Shankar VS, Pazianas M, Simon BJ, Lai FA, Huang CL-H, Zaidi M. 1996. Extracellularly applied ruthenium red and cADP ribose elevate cytosolic Ca2+ in isolated rat osteoclasts. Am J Physiol 270: F469–F475.

    PubMed  CAS  Google Scholar 

  • Adebanjo OA, Shankar VS, Pazianas M, Zaidi A, Huang CL-H, Zaidi M. 1994. Modulation of the osteoclast Ca2+ receptor by extracellular protons. Possible linkage between Ca2+ sensing and extracellular acidification. Biochem Biophys Res Commun 194: 742–747.

    Article  Google Scholar 

  • Akisaka T, Yoshida H, Suzuki R. 2006. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane. J Electron Microsc (Tokyo) 55:53–61.

    Article  CAS  Google Scholar 

  • Anderson K, Lai F., Liu QY, Rousseau E, Erickson HP, Meissner G. 1989.. Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex. J Biol Chem 264: 1329–35.

    PubMed  CAS  Google Scholar 

  • Armour KE, Armour KJ, Gallagher ME, Godecke A, Helfrich MH, Reid DM, Ralston SH. 2001. Defective bone formation and anabolic response to estrogen in mice with targeted disruption of eNOS. Endocrinology 142: 760–6.

    Article  PubMed  CAS  Google Scholar 

  • Ashley RH. 2003. Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins. Mol Membr Biol 20: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Balmain N, Berdal A, Hotton D, Cuisinier-Gleizes P, Mathieu H. 1989. Calbindin-D9K immunolocalization and vitamin D-dependence in the bone of growing and adult rats. Histochemistry 92: 359–65.

    Article  PubMed  CAS  Google Scholar 

  • Bax BE, Shankar VS, Bax CMR., Alam ASMT, Zara SJ, Pazianas M., Huang CL-H, Zaidi M. 1993. Functional consequences of the interaction of Ni2+ with the osteoclast Ca2+ receptor. Exper Physiol 78: 517–529.

    CAS  Google Scholar 

  • Bax CM, Shankar VS, Moonga BS, Huang CL-H, Zaidi M. 1992. Is the osteoclast calcium “receptor” a receptor-operated calcium channel? Biochem Biophys Res Commun 183: 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Bekker PJ, Gay CV. 1990. Characterization of a Ca2+-ATPase in osteoclast plasma membrane. J Bone Miner Res 5: 557–67.

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Alvarez U, Hruska KA. 2001. Receptor-operated osteoclast calcium sensing. Endocrinology 142: 1968–74.

    Article  PubMed  CAS  Google Scholar 

  • Bergh JJ, Shao Y, Puente E, Duncan RL, Farach-Carson MC. 2006. Osteoblast Ca2+ permeability and voltage-sensitive Ca2+ channel expression is temporally regulated by 1,25-dihydroxyvitamin D3. Am J Physiol 290: C822–31.

    Article  CAS  Google Scholar 

  • Berry KL, Bulow HE, Hall DH, Hobert O. 2003. A C. elegans CLIC-like Protein Required for Intracellular Tube Formation and Maintenance. Science 302: 2134–37.

    Article  PubMed  CAS  Google Scholar 

  • Berryman M, Bruno J, Price J, Edwards JC. 2004. CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J Biol Chem 279: 34794–801.

    Article  PubMed  CAS  Google Scholar 

  • Bikle DD, Halloran BP. 1999. The response of bone to unloading. J Bone Miner Metab 17: 233–44.

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Borysenko CW, Villa A, Schlesinger PH, Kalla SE, Yaroslavskiy BB, Garcia-Palacios V, Oakley JI, Orchard PJ. 2004. In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J Bone Miner Res 19: 1329–38.

    Article  PubMed  Google Scholar 

  • Blair HC, Zaidi M., Schlesinger PH. 2002. Mechanisms Balancing Skeletal Matrix Synthesis and Degradation. Biochem J, 364: 329–341.

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Schlesinger PH. 1990. Purification of a stilbene sensitive chloride channel and reconstitution of chloride conductivity into phsopholipid vesicles. Biochem Biophys Res Commun 171: 920–25.

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. 1989. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245: 855–7.

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Tan HL, Koziol CM, Schlesinger PH. 1991. Passive chloride permeability charge coupled to H+-ATPase of avian osteoclast ruffled membrane. Am J Physiol 260: C1315–24.

    PubMed  CAS  Google Scholar 

  • Boutahar N, Guignandon A, Vico L, Lafage-Proust MH. 2004. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase-2 tyrosine sites involved in ERK activation. J Biol Chem 279: 30588–99.

    Article  PubMed  CAS  Google Scholar 

  • Bowler WB, Littlewood-Evans A, Bilbe G, Gallagher JA, Dixon CJ. 1998. P2Y2 receptors are expressed by human osteoclasts of giant cell tumor but do not mediate ATP-induced bone resorption. Bone 22: 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD. 1997. The ATP synthase–a splendid molecular machine. Annu Rev Biochem 66:717–49.

    Article  PubMed  CAS  Google Scholar 

  • Bradford PG, Maglich JM, Kirkwood KL. 2000. IL-1β increases type 1 inositol trisphosphate receptor expression and IL-6 secretory capacity in osteoblastic cell cultures. Mol Cell Biol Res Commun 3: 73–5.

    Article  PubMed  CAS  Google Scholar 

  • Brandt S, Jentsch TJ. 1995. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett 377: 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Brown EM. 1991. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 71: 371–411.

    PubMed  CAS  Google Scholar 

  • Brown EM, Gamba G, Riccardi ID, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. 1993. Cloning and characterization of an extracellular calcium sensing receptor from bovine parathyroid. Nature 366: 575–9.

    Article  PubMed  CAS  Google Scholar 

  • Bugel S. 2005. Vitamin k and bone health. Proc. Nutri. Soc 62: 839–843.

    Article  CAS  Google Scholar 

  • Bushinsky D. 2001. Acid-base imbalance and the skeleton. Eur J Nutr 40: 238–244.

    Article  PubMed  CAS  Google Scholar 

  • Carano A., Schlesinger PH, Athanasou NA, Teitelbaum, SL, Blair, HC. 1993. Acid and base effects on avian osteoclast activity. Am. J. Physiol., 264: C694–701.

    PubMed  CAS  Google Scholar 

  • Carn G, Koller DL, Peacock M, Hui SL, Evans WE, Conneally PM, Johnston CC Jr, Foroud T, Econs MJ. 2002. Sibling pair linkage and association studies between peak bone mineral density and the gene locus for the osteoclast-specific subunit of the vacuolar proton pump on chromosome 11p12–13. J Clin Endocrinol Metab 87: 3819–24.

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Macica CM, Ng KW, Broadus AE. 2005. Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res 20:1454–61.

    Article  PubMed  CAS  Google Scholar 

  • Civitelli R, Beyer EC, Warlow PM, Robertson AJ, Geist ST, Steinberg TH. 1993. Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J. Clin. Invest 91: 1888–1896.

    Article  PubMed  CAS  Google Scholar 

  • Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W. 2001. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10: 2861–7.

    Article  PubMed  CAS  Google Scholar 

  • Cretin A. 1951. Contribution histochimique a etude de la construction et de la destruction osseuse. La Presse Medicale 59: 1240–1242.

    PubMed  CAS  Google Scholar 

  • Danciu TE, Adam RM, Naruse K, Freeman MR, Hauschka PV. 2003. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett 536: 193–7.

    Article  PubMed  CAS  Google Scholar 

  • Datta HK, MacIntyre I, Zaidi M. 1989. The effect of extracellular calcium elevation on morphology and function of isolated rat osteoclasts. Bioscience Reports 9, 747–51.

    Article  PubMed  CAS  Google Scholar 

  • Datta HK, MacIntyre I, Zaidi M. 1990. Intracellular calcium in the control of osteoclast function. I. Voltage-insensitivity and lack of effects of nifedipine, BAYK8644 and diltiazem. Biochem Biophys Res Commun 167: 183–8.

    Article  PubMed  CAS  Google Scholar 

  • Davidson RM. 1993. Membrane stretch activates a high-conductance K+ channel in G292 osteoblastic-like cells. J Membr Biol 131:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Davies GHE, Madesh M. 2004. Calcium signaling and apoptosis. Biochem Biophys Res Commun 304: 445–54.

    Google Scholar 

  • Deakins M, Burt RL. 1944. The deposition of calcium, phosphorus, and carbon dioxide in calcifying dental enamel. J Biol Chem 156: 77.

    CAS  Google Scholar 

  • Diewald L, Rupp J, Dreger M, Hucho F, Gillen C, Nawrath H. 2002. Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis. Biochem Biophys Res Commun 291: 421–424.

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Misler S. 1989. Voltage-activated and stretch-activated Ba2+ conducting channels in an osteoblast-like cell line (UMR 106). FEBS Lett 251: 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt AW, Yeager-Jones A, Blair HC. 2001. Regional trabecular bone matrix degeneration and osteocyte death in femora of glucocorticoid- treated rabbits. Endocrinology 142: 1333–40.

    Article  PubMed  CAS  Google Scholar 

  • Edwards JC, Cohen C, Xu W, Schlesinger PH. 2006. c-Src Control of Chloride Channel Support for Osteoclast HCl Transport and Bone Resorption. J Biol Chem 281: 28011–22.

    Article  PubMed  CAS  Google Scholar 

  • Elsegood CL, Zhuo Y, Wesolowski GA, Hamilton JA, Rodan GA, Duong LT. 2006. M-CSF induces the stable interaction of cFms with αVβ3 integrin in osteoclasts. Int J Biochem Cell Biol 38: 1518–1529.

    Article  PubMed  CAS  Google Scholar 

  • Eu JP, Xu L, Stamler JS, Meissner G. 1999. Regulation of ryanodine receptors by reactive nitrogen species. Biochem Pharmacol 57: 1079–84.

    Article  PubMed  CAS  Google Scholar 

  • Falsafi R, Tatakis DN, Hagel-Bradway S, Dziak R. 1991. Effects of inositol trisphosphate on calcium mobilization in bone cells. Calcif Tissue Int 49: 333–9.

    Article  PubMed  CAS  Google Scholar 

  • Finbow ME, Harrison MA. 1997. The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 324 697–712.

    PubMed  CAS  Google Scholar 

  • Gama L, Baxendale-Cox LM, Breitwieser GE. 1997. Ca2+-sensing receptors in intestinal epithelium. Am J Physiol 273: C1168–75.

    PubMed  CAS  Google Scholar 

  • Gay CV, Lloyd QP. 1995. Characterization of calcium efflux by osteoblasts derived from long bone periosteum. Comp Biochem Physiol A Physiol. 111: 257–61.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. 1995. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 80: 439–444.

    Article  PubMed  CAS  Google Scholar 

  • Gofa A, Davidson RM. 1996. NaF potentiates a K+-selective ion channel in G292 osteoblastic cells. J Membr Biol 149: 211–9.

    Article  PubMed  CAS  Google Scholar 

  • Golden LH, Insogna KL. 2004. The expanding role of PI3-kinase in bone. Bone 34: 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Grabe, M., Oster, G. 2001. Regulation of Organelle Acidity. J. Gen. Physiol. 117:329–343.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Preston MR, Magnay J, El Haj AJ, Publicover SJ. 2001. Hormonally-regulated expression of voltage-operated Ca2+ channels in osteocytic (MLO-Y4) cells. Biochem Biophys Res Commun 282: 536–42.

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Maehashi H, Miyazawa T, Naito M. 2001. Potentiation by stannous chloride of calcium entry into osteoblastic MC3T3-E1 cells through voltage-dependent L-type calcium channels. Cell Calcium 30: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Heiss NS, Poustka A. 1997. Genomic structure of a novel chloride channel gene, CLIC2, in Xq28. Genomics 45: 224–8.

    Google Scholar 

  • Henriksen Z, Hiken JF, Steinberg TH, Jorgensen NR. 2006. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells. Cell Calcium 39: 435–44.

    Article  PubMed  CAS  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL. 2002. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99: 9445–9.

    Article  PubMed  CAS  Google Scholar 

  • Hirota J, Baba M, Matsumoto M, Furuichi T, Takatsu K, Mikoshiba K. 1998. T-cell-receptor signalling in inositol 1,4,5-trisphosphate receptor (IP3R) type-1-deficient mice: is IP3R type 1 essential for T-cell-receptor signalling? Biochem J 333: 615–9.

    PubMed  CAS  Google Scholar 

  • Ho AM, Johnson MD, Kingsley DM. 2000. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289: 265–70.

    Article  PubMed  CAS  Google Scholar 

  • Hoebertz A, Arnett TR, Burnstock G. 2003. Regulation of bone resorption and formation by purines and pyrimidines. TRENDS in Pharm. Sci., 24, 290–297.

    Article  CAS  Google Scholar 

  • Huang MS, Adebanjo OA, Awumey E, Biswas G, Koval A, Sodam BR, Sun L, Moonga BS, Epstein J, Goldstein S, Lai FA, Lipschitz D, Zaidi M. 2000. IP(3), IP(3) receptor, and cellular senescence. Am J Physiol 278: F576–84.

    CAS  Google Scholar 

  • Hughes S, Magnay J, Foreman M, Publicover SJ, Dobson JP, El Haj AJ. 2006. Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts. J Cell Physiol 206: 738–48.

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford M. 2004. Signal transduction and mechanical stress. Sci STKE. 2004: RE12.

    Google Scholar 

  • Hurle B, Ignatova E, Massironi SM, Mashimo T, Rios X., Thalmann I., Thalman R. Ornitz DM. 2003. Non-syndromic vestibular disorder with otoconial agenesis in Tilted/Mergulhador mice caused by mutations in otopetrin 1. Human Molecular Genetics 12: 777–89.

    Article  PubMed  CAS  Google Scholar 

  • Hurle B, Lane K, Kenney J, Tarantino LM, Bucan M, Brownstein BH, Ornitz M. 2001. Physical mapping of the mouse tilted locus identifies an association between human deafness loci dfna6/14 and vestibular system development. Genomics 77: 189–99.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal J, Kumar K, Sun L, Zaidi M. 2006. Selective Upregulation of the ADPribosyl-cyclases CD38 and CD157 by TNF but not by RANK-L Reveals Differences in Downstream Signaling. Am J Physiol Renal Physiol 291: F557–66.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ, Poet M, Fuhrmann JC, A-A, Zdebik AA. 2005. Physiological Functions of ClC Cl- Channels Gleaned from Human Genetic Disease and Mouse Models. Ann Rev Physiol 67: 779–807.

    Article  CAS  Google Scholar 

  • Jorgensen NR, Teilmann SC, Henriksen Z, Civitelli R, Sorensen OH, Steinberg TH. 2003. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells. J Biol Chem 278: 4082–6.

    Article  PubMed  CAS  Google Scholar 

  • Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, Izumi N, Kawashima H, Ozawa H, Ikeda K, Kameda A, Hakeda Y, Kumegawa M. 1998. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245: 419–22.

    Article  PubMed  CAS  Google Scholar 

  • Kamioka H, Sugawara Y, Murshid SA, Ishihara Y, Honjo T, Takano-Yamamoto T. 2006. Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21: 1012–21.

    Article  PubMed  CAS  Google Scholar 

  • Kasper, D., Planells-Cases, R., Fuhrmann, J.C., Scheel, O., Zeitz, O., Ruether, K., Schmitt, A., Poe, M., Steinfeld, R., Schweizer, M., Kornak, U., Jentsch, T.J. 2005. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 24: 1079–1091.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood KL, Homick K, Dragon MB, Bradford PG. 1997. Cloning and characterization of the type I inositol 1,4,5-trisphosphate receptor gene promoter. Regulation by 17β- estradiol in osteoblasts. J Biol Chem 272: 22425–31.

    Article  PubMed  CAS  Google Scholar 

  • Kizer N, Guo XL, Hruska K. 1997. Reconstitution of stretch-activated cation channels by expression of the alpha-subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci USA. 94: 1013–8.

    Article  PubMed  CAS  Google Scholar 

  • Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ. 2001. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104: 205–15.

    Article  PubMed  CAS  Google Scholar 

  • Kos CH, Karaplis AC, Peng JB, Hediger MA, Goltzman D, Mohammad KS, Guise TA, Pollak MR. 2003. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 111: 1021–8.

    Article  PubMed  CAS  Google Scholar 

  • Lakkakorpi PT, Lehenkari PP, Rautiala TJ, Vaananen HK. 1996. Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium. J Cell Physiol 168: 668–77.

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM. 2000. Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res 15: 1501–9.

    Article  PubMed  CAS  Google Scholar 

  • Li W, Duncan RL, Karin NJ, Farach-Carson MC. 1997. 1,25 (OH)2D3 enhances PTH-induced Ca2+ transients in preosteoblasts by activating L-type Ca2+ channels. Am J Physiol. 273: E599–605.

    PubMed  CAS  Google Scholar 

  • Li YP, Chen W, Liang Y, Li E, Stashenko P. 1999. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 23: 447–451.

    Article  PubMed  CAS  Google Scholar 

  • Lotz M, Rosen F, McCabe G, Quach J, Blanco F, Dudler J, Solan J, Goding J, Seegmiller JE, Terkeltaub R. 1995. Interleukin 1 beta suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPi-generating enzyme PC-1 in human chondrocytes. Proc Natl Acad Sci U S A. 92: 10364–8.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Jiang YP, Ballou LM, Cohen IS, Lin RZ. 2005. Gα q inhibits cardiac L-type Ca2+ channels through phosphatidylinositol 3-kinase. J Biol Chem 2005 280: 40347–54.

    Article  CAS  Google Scholar 

  • Lundgren S, Hjalm G, Hellman P, Ek B, Juhlin C, Rastad J, Klareskog L, Akerstrom G, Rask L. 1994. A protein involved in calcium sensing of the human parathyroid and placental cytotrophoblast cells belongs to the LDL-receptor protein superfamily. Exper Cell Res 212: 344–50.

    Article  CAS  Google Scholar 

  • MacKenna DA, Dolfi F, Vuori K, Ruoslahti E. 1998. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101: 301–10.

    Article  PubMed  CAS  Google Scholar 

  • Malgaroli, A., Meldolesi, J., Zallone, A. Z. & Teti, A. 1989. Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J Biol Chem 264: 14342–7.

    PubMed  CAS  Google Scholar 

  • Marcantoni A, Levi RC, Gallo MP, Hirsch E, Alloatti G. 2006. Phosphoinositide 3-kinaseγ controls L-type calcium current through its positive modulation of type-3 phosphodiesterase. J Cell Physiol 206: 329–36.

    Article  PubMed  CAS  Google Scholar 

  • Mattsson JP, Li X, Peng S-B, Nilsson F, Adersen P, Lundberg LG, Stone DK, Keeling DJ. 2000. Properties of three isoforms of the 116-kDa Subunit of vacuolar H+-ATPase from a single vertebrate species. Cloning, gene expression and protein characterization of functionally distinct isoforms in Gallus domesticus. Euro J Bioch 267: 4115–26.

    Article  CAS  Google Scholar 

  • Miyauchi A, Alvarez J, Greenfield EM, Teti A, Grano M, Colucci S, Zambonin-Zallone A, Ross FP, Teitelbaum SL, Cheresh D. 1991. Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem. 266: 20369–74.

    PubMed  CAS  Google Scholar 

  • Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R, Colucci S, Zambonin-Zallone A, Teitelbaum SL, Teti A. 1990. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J Cell Biol 111: 2543–52.

    Article  PubMed  CAS  Google Scholar 

  • Moonga BS, Li S, Iqbal J, Davidson R, Shankar VS, Bevis PJ, Inzerillo A, Abe E, Huang CL, Zaidi M. 2002. Ca2+ influx through the osteoclastic plasma membrane ryanodine receptor. Am J Physiol Renal Physiol 282: F921–32.

    PubMed  CAS  Google Scholar 

  • Moonga BS, Datta HK, Bevis PJR, Huang C.-H, MacIntyre I, Zaidi M. 1991. Correlates of osteoclast function in the presence of perchlorate ions in the rat. Exper Physiol 76: 923–33.

    CAS  Google Scholar 

  • Moonga BS, Davidson R, Sun L, Adebanjo OA, Moser J, Abedin M, Zaidi N, Huang CL-H, Zaidi M. 2001. cIdentification and characterization of a sodium/calcium exchanger, NCX-1, in osteoclasts and its role in bone resorption. Biochem Biophys Res Commun283: 770–5.

    Article  PubMed  CAS  Google Scholar 

  • Moonga BS, Moss DW, Patchell A, Zaidi M. 1990. Intracellular regulation of enzyme secretion from rat osteoclasts and evidence for a functional role in bone resorption. J Physiol 429: 29–45.

    PubMed  CAS  Google Scholar 

  • Morrison MS, Turin L, King BF, Burnstock G, Arnett TR. 1998. ATP is a potent stimulator of the activation and formation of rodent osteoclasts. J Physiol. 511: 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt SA, Horton MA. 1997. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 27: 266–9.

    Article  Google Scholar 

  • Neuman WF, Neuman MW. 1958. The chemical dynamics of bone mineral. University of Chicago Press, Chicago.

    Google Scholar 

  • Nishi T, Forgac M. 2002. The vacuolar H+-ATPases – Natures most versitile proton pumps. Nature Rev 3: 94–102.

    Article  CAS  Google Scholar 

  • Nishiya Y, Kosaka N, Uchii M, Sugimoto S. 2002. A potent 1,4-dihydropyridine L-type calcium channel blocker, benidipine, promotes osteoblast differentiation. Calcif Tissue Int 70: 30–9.

    Article  PubMed  CAS  Google Scholar 

  • Nomura S, Takano-Yamamoto T. 2000. Molecular events caused by mechanical stress in bone. Matrix Biol 19: 91–6.

    Article  PubMed  CAS  Google Scholar 

  • Nurnberg P, Thiele H, Chandler D, Hohne W, Cunningham ML, Ritter H, Leschik G, Uhlmann K, Mischung C, Harrop K, Goldblatt J, Borochowitz ZU, Kotzot D, Westermann F, Mundlos S, Braun HS, Laing N, Tinschert S. 2001. Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat Genet 28: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Pazianas M, Adebanjo OA, Shankar VS, James SY, Colston KW, Maxwell JD, Zaidi M. 1995. Extracellular cation sensing by the enterocyte. Prediction of a novel divalent cation receptor. Biochem Biophys Res Comm210: 948–53.

    Article  PubMed  CAS  Google Scholar 

  • Pazianas M, Zaidi M, Huang CL-H, Moonga BS, Shankar VS. 1993. Voltage-sensitivity of the osteoclast calcium receptor. Biochem Biophys Res Commun192: 1100–5.

    Article  PubMed  CAS  Google Scholar 

  • Pendleton A, Johnson MD, Hughes A, Gurley KA, Ho AM, Doherty M, Dixey J, Gillet P, Loeuille D, McGrath R, Reginato A, Shiang R, Wright G, Netter P, Williams C, Kingsley DM. 2002. Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet. 71:933–40.

    Article  PubMed  Google Scholar 

  • Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ, Quarles LD. 2005. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–9.

    Article  PubMed  CAS  Google Scholar 

  • Picollo, A., Pusch, M. 2005. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423.

    Article  PubMed  CAS  Google Scholar 

  • Piper RC, Luzio JP. 2004. CUPpling calcium to lysosomal biogenesis. TRENDS in Cell Biol. 14: 471–3.

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–7.

    Article  PubMed  CAS  Google Scholar 

  • Quinn SJ, Ye CP, Diaz R, Kifor O, Bai M., Vassilev P, Brown E. 1997. The Ca2+-sensing receptor: a target for polyamines. Am J Physiol 273: C1315–23.

    PubMed  CAS  Google Scholar 

  • Radding W, Jordan SE, Hester RB, Blair HC. 1999. Intracellular calcium puffs in osteoclasts. Exp Cell Res. 253: 689–96.

    Article  PubMed  CAS  Google Scholar 

  • Reichenberger E, Tiziani V, Watanabe S, Park L, Ueki Y, Santanna C, Baur ST, Shiang R, Grange DK, Beighton P, Gardner J, Hamersma H, Sellars S, Ramesar R, Lidral AC, Sommer A, Raposo do Amaral CM, Gorlin RJ, Mulliken JB, Olsen BR. 2001. Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet 68:1321–6.

    Article  PubMed  CAS  Google Scholar 

  • Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, Bindels RJ, Hoenderop JG. 2005. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16: 3188–95.

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico R, Cayatte C, Bourget-Ponzio I, Romey G, Belhacene N, Loubat A, Rocchi S, Van Obberghen E, Girault JA, Rossi B, Schmid-Antomarchi H. 2003. Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res 18: 1863–71.

    Article  PubMed  CAS  Google Scholar 

  • Riccardi D, Park J, Lee WS, Gamba G, Brown EM, Hebert SC. 1995. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA 92: 131–5.

    Article  PubMed  CAS  Google Scholar 

  • Riddle RC, Taylor AF, Genetos DC, Donahue HJ. 2006. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 290: C776–84.

    Article  PubMed  CAS  Google Scholar 

  • Romanello M, Padoan M, Franco L, Veronesi V, Moro L, D’Andrea P. 2001. Extracellular NAD+ induces calcium signaling and apoptosis in human osteoblastic cells. Biochem Biophys Res Commun 285: 1226–31.

    Article  PubMed  CAS  Google Scholar 

  • Ruwhof C, van der Laarse A. 2000. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47: 23–37.

    Article  PubMed  CAS  Google Scholar 

  • Ryder KD, Duncan RL. 2001. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res 16: 240–8.

    Article  PubMed  CAS  Google Scholar 

  • Sadoshima J, Takahashi T, Jahn L, Izumo S. 1992. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA. 89: 9905–9.

    Article  PubMed  CAS  Google Scholar 

  • Salo J, Lehenkari P, Metsikko K, Vanananen HK. 1997. Removal of osteoclast bone resorption products by transcytosis. Science 276: 270–273.

    Article  PubMed  CAS  Google Scholar 

  • Santella L, Carafoli E. 1997. Calcium signaling in the cell nucleus. FASEB J 11: 1091–2109.

    PubMed  CAS  Google Scholar 

  • Scheel O, Zdebik AA, Lourdel S, Jentsch TJ. 2005. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436: 424–7.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC. 1997. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem 272: 18636–43.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger PH, Mattsson JP, Blair HC. 1994. Osteoclastic Acid Transport: Mechanism and Implications for Physiology and Pharmacological Regulation. Mineral Eletrolyte Metab 20: 31–9.

    CAS  Google Scholar 

  • Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, Striessnig J, Klugbauer N, Feil R, Hofmann F. 2000. Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J. Biol. Chem., 275: 39193–9.

    Article  PubMed  CAS  Google Scholar 

  • Shankar VS, Alam AS, Bax CM, Bax BE, Pazianas M, Huang CL-H, Zaidi, M. 1992a. Activation and inactivation of the osteoclast Ca2+ receptor by the trivalent cation, La3+. Biochem Biophys Res Commun 187: 907–12.

    Article  CAS  Google Scholar 

  • Shankar VS, Bax CMR, Bax BE, Alam ASMT., Simon B, Pazianas M, Moonga BS, Huang CL-H, Zaidi M. 1993. Activation of the Ca2+ receptor on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: Evidence for receptor activation and inactivation, intracellular Ca2+ redistribution and divalent cation modulation. J Cell Physiol 155: 120–9.

    Article  PubMed  CAS  Google Scholar 

  • Shankar V S, Bax CM, Alam A., Bax BE, Huang CL-H, Zaidi M. 1992b. The osteoclast Ca2+ receptor is highly sensitive to activation by transition metal cations. Biochem Biophys Res Commun 187: 913–8.

    Article  CAS  Google Scholar 

  • Shankar VS, Huang CL-H, Adebanjo OA, Pazianas M, Zaidi M. 1994. Calcium influx and release in isolated rat osteoclasts. Exper Physiol 79: 537–545.

    CAS  Google Scholar 

  • Shankar VS, Huang CL-H, Adebanjo OA, Simon BJ, Alam ASMT, Moonga BS, Pazianas M, Scott RH, Zaidi M. 1995. The effect of membrane potential on surface Ca2+ receptor activation in rat osteoclasts. J Cell Physiol 162: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Shankar VS, Pazianas M, Huang CL-H, Simon B, Adebanjo OA, Zaidi M. 1995. Caffeine modulates Ca2+ receptor activation in isolated rat osteoclasts and induces intracellular Ca2+ release. Am J Physiol 268: F447–54.

    PubMed  CAS  Google Scholar 

  • Silver IA, Murrills RJ, Etherington DJ. 1988. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exper Cell Res 175: 266–276.

    Article  CAS  Google Scholar 

  • Soriano P, Montgomery C, Geske R, Bradley A. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64: 693–702.

    Article  PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT. 2005. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA. 102: 8089–96.

    Article  PubMed  CAS  Google Scholar 

  • Stains JP, Weber JA, Gay CV. 2002. Expression of Na+/Ca2+ exchanger isoforms (NCX1 and NCX3) and plasma membrane Ca2+-ATPase during osteoblast differentiation. J Cell Biochem 84: 625–35.

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Adebanjo OA, Koval A, Anandatheerthavarada HK, Iqbal J, Wu XY, Moonga BS, Wu XB, Biswas G, Bevis PJ, Kumegawa M, Epstein S, Huang CL, Avadhani NG, Abe E, Zaidi M. 2002. A novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+ signaling via CD38/ADP-ribosyl cyclase, a putative intracellular NAD+ sensor. FASEB J. 16: 302–14.

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Iqbal J, Dolgilevich S, Yuen T, Wu XB, Moonga BS, Adebanjo OA, Bevis PJ, Lund F, Huang CL, Blair HC, Abe E, Zaidi M. 2003. Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption. FASEB J 17: 369–75.

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Adebanjo OA, Moonga BS, Corisdeo S, Anandatheerthavarada HK, Biswas G, Arakawa T, Hakeda Y, Koval A, Sodam B, Bevis PJ, Moser AJ, Lai FA, Epstein S, Troen BR, Kumegawa M, Zaidi M. 1999. CD38/ADP-ribosyl cyclase: a new role in the regulation of osteoclastic bone resorption. J Cell Biology 146: 1161–71.

    Article  CAS  Google Scholar 

  • Suzuki H., Ikeda K, Furukawa M., Takasaka T. 1997. P2 purinoceptor of the globular substance in the otoconial membrane of the guinea pig inner ear. Am J Physiol 273: C1533–40.

    PubMed  CAS  Google Scholar 

  • Tehrani, S., Faccio, R., Ross, F.P., Cooper, J.A. 2006. Cortactin has an essential and highly specific role in osteoclast actin assembly. Molec. Biol. Cell., epub 2006.

    Google Scholar 

  • Teti A, Grano M, Colucci S, Argentino L, Barattolo R, Miyauchi A, Teitelbaum SL, Hruska KA, Zambonin Zallone A. 1989. Voltage dependent calcium channel expression in isolated osteoclasts. Boll Soc Ital Biol Sper 65: 1115–8.

    PubMed  CAS  Google Scholar 

  • Turnbull CI, Looi K, Mangum JE, Meyer M, Sayer RJ, Hubbard MJ. 2004. Calbindin independence of calcium transport in developing teeth contradicts the calcium ferry dogma. J Biol Chem. 279: 55850–4.

    Article  PubMed  CAS  Google Scholar 

  • van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP. 2005. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci USA 102: 17507–12.

    Article  PubMed  CAS  Google Scholar 

  • Vaananen HK, Zhao H, Halleen JH. 2000. The cell biology of osteoclast function. J Cell Sci 113: 377–81.

    PubMed  CAS  Google Scholar 

  • Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T. 2002. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360: 692–4.

    Article  PubMed  CAS  Google Scholar 

  • Weber P. 2001. Vitamin K and bone health. Nutrition 17: 880–7.

    Article  PubMed  CAS  Google Scholar 

  • Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN, Mahuren JD, Coburn SP. 1995. Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5’-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95: 1440–5.

    Article  PubMed  CAS  Google Scholar 

  • Wiebe SH, Sims SM, Dixon SJ. 1999. Calcium signalling via multiple P2 purinoceptor subtypes in rat osteoclasts. Cell Physiol Biochem 9: 323–37.

    Article  PubMed  CAS  Google Scholar 

  • Williams CJ, Zhang Y, Timms A, Bonavita G, Caeiro F, Broxholme J, Cuthbertson J, Jones Y, Marchegiani R, Reginato A, Russell RG, Wordsworth BP, Carr AJ, Brown MA. 2002. Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am J Hum Genet. 71: 985–91.

    Article  PubMed  Google Scholar 

  • Wiltink A, Van Duijn B, Weidema AF, De Vos A, van der Meer JM, Nijweide PJ, Ypey DL. 1994. Differential depolarization-activated calcium responses in fetal and neonatal rat osteoblast-like cells. Calcif Tissue Int 54: 278–83.

    Article  PubMed  CAS  Google Scholar 

  • Xia SL, Ferrier J. 1992. Propagation of a calcium pulse between osteoblastic cells. Biochem Biophys Res Commun. 186: 1212–9.

    Article  PubMed  CAS  Google Scholar 

  • Xia SL, Ferrier J. 1996. Localized calcium signaling in multinucleated osteoclasts. J Cell Physiol 167: 148–55.

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Welling A, Paparisto S, Hofmann F, Klugbauer N. 2003. Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2-deficient mice. J Biol Chem 278: 40837–41

    Article  PubMed  CAS  Google Scholar 

  • Yaroslavskiy BB, Zhang Y, Kalla SE, Garcia Palacios V, Sharrow AC, Li Y, Zaidi M, Wu C, Blair HC. 2005. NO-dependent osteoclast motility: reliance on cGMP-dependent protein kinase I and VASP. J Cell Science 118: 5479–87.

    Article  PubMed  CAS  Google Scholar 

  • Young MF. 2003. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 14 Suppl 3: S35–42.

    PubMed  CAS  Google Scholar 

  • Ypey DL, Weidema AF, Hold KM, Van der Laarse A, Ravesloot JH, Van Der Plas A, Nijweide PJ. 1992. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells. J Bone Miner Res. 7 Suppl 2: S377–87.

    Article  PubMed  Google Scholar 

  • Zahanich I, Graf EM, Heubach JF, Hempel U, Boxberger S, Ravens U. 2005. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 20: 1637–46.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M. 1990. “Calcium receptors” on eukaryotic cells with special reference to the osteoclast. Biosci Rep 10: 493–507.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M, Datta HK, Patchell A, Moonga B, MacIntyre I. 1989. ‘Calcium-activated’ intracellular calcium elevation: A novel mechanism of osteoclast regulation. Biochem Biophys Res Commun 163: 1461–5.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi, M., Huang, A. S. M. T., Shankar, V. S., Pazianas, M., Bax, B. E., Bax, C. M. R., Moonga, B. S., Bevis, P. J. R., Stevens, C. R., Blake, D. R., Huang, C. L.-H. 1993. Cellular biology of bone resorption. Biological Reviews of the Cambridge Philosophical Society 68, 197–264.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M, Kerby J, Huang C.-H, Alam ASMT, Rathod H, Chambers TJ, Moonga BS. 1991. Divalent cations mimic the inhibitory effects of extracellular ionized calcium on bone resorption by isolated rat osteoclasts: Further evidence for a “calcium receptor”. J Cell Physiol 149: 422–7.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M, MacIntyre I, Datta, H. 1990. Intracellular calcium in the control of osteoclast function. II. Paradoxical elevation of cytosolic free calcium by verapamil. Biochem Biophys Res Commun 167: 807–12.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M., Shankar VS, Adebanjo OA, Lai FA, Pazianas M, Sunavala G, Spielman AI, Rifkin BR. 1996. Regulation of extracellular calcium sensing in rat osteoclasts by femtomolar calcitonin concentrations. Am J Physiol 271: F637–44.

    PubMed  CAS  Google Scholar 

  • Zaidi M, Shankar VS, Bax CMR, Bax BE, Alam ASMT, Banerji B, Bevis PJR, Gill JS, Moonga BS, Huang CL-H. 1992a. Characterization of the osteoclast calcium receptor. In: Calcium Regulation and Bone metabolism. Eds: Cohn DV & Tashjian AR Jr., pp 170–4. Elsevier, Amsterdam.

    Google Scholar 

  • Zaidi M, Shankar VS, Towhidul Alam AS, Moonga BS, Pazianas M, Huang CL. 1992b. Evidence that a ryanodine receptor triggers signal transduction in the osteoclast. Biochem Biophys Res Commun.188: 1332–6.

    Article  CAS  Google Scholar 

  • Zaidi M, Shankar VS, Tunwell R, Adebanjo OA, Mackrill J, Pazianas M, O’Connell D, Simon BJ, Rifkin BR, Venkitaraman AR, Huang, CL-H, Lai FA. 1995. A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. J Clin Invest 96: 1582–90.

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Jiang J, Chen SH, Vergara S, Gong Y, Xue J, Huang H, Kaku M, Holliday LS. 2006, Actin binding activity of subunit B of vacuolar H+-ATPase is involved in its targeting to ruffled membranes of osteoclasts. J Bone Miner Res 21: 714–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

BLAIR, H., SCHLESINGER, P., HUANG, CH., ZAIDI, M. (2007). Calcium Signalling and Calcium Transport in Bone Disease. In: Carafoli, E., Brini, M. (eds) Calcium Signalling and Disease. Subcellular Biochemistry, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6191-2_21

Download citation

Publish with us

Policies and ethics