Skip to main content

Part of the book series: Challenges and Advances In Computational Chemistry and Physics ((COCH,volume 5))

The results of experiments, which measured the damage induced by the impact of low energy electrons (LEE) on DNA under ultra-high vacuum conditions, are reviewed with emphasis on transient anion formation. The experiments are briefly described and several examples are presented from results on the yields of fragments produced as a function of the incident energy (0.1–30 eV) of the electrons. By comparing the results from experiments with different forms of the DNA molecule (i.e., from short single stranded DNA having four bases to plasmids involving ~3,000 base pairs) and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of basic DNA components, base release and the production of single, double-strand breaks and cross-links. Below 15 eV, electron resonances (i.e., the formation of transient anions) play a dominant role in the fragmentation of any bonds within DNA. These transient anions modify or fragment DNA by decaying into dissociative electronically excited states or by dissociating into a stable anion and a neutral radical. The fragments can initiate further reactions within DNA and thus cause more complex chemical damage. The incident electron wave can first diffract within the molecule before temporary localization on a basic DNA unit, but when transient anion decay by electron emission occurs, the departing electron wave can also be strongly enhanced by constructive interference within the DNA molecule. The experiments with oligonucleotides reported in this article show that the amount of damage generated by 3–15 eV electrons is dependent on base identity, base sequence and electron energy. Capture of a LEE by a DNA subunit may also be followed by electron transfer to another. Such transfers are affected by base stacking and sequence. Furthermore, the damage is strongly dependent on the topology and environment of DNA and the type of counter ion on the phosphate group. In particular, condensing H2O on a DNA induces the formation of a new type of transient anion whose parent is a H2O-DNA complex. Finally, under identical conditions, LEE were found to be three times more effective than X rays to produce strand breaks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Sonntag C (1987) The Chemical Basis for Radiation Biology, Taylor and Francis, London.

    Google Scholar 

  2. Ward JF (1977) Advances in Radiation Biology 5, Academic Press, New York.

    Google Scholar 

  3. Yamamoto O (1976) Aging, Carcinogenesis and Radiation Biology, Smith K (ed), Plenum, New York.

    Google Scholar 

  4. Fuciarelli AF, Zimbrick JD (eds) (1995) Radiation Damage in DNA: Structure/Function Relationships at Early Times, Batelle, Columbus.

    Google Scholar 

  5. Sanche L (2005) Eur Phys J D 35:367.

    Article  CAS  Google Scholar 

  6. Cai Z, Cloutier P, Hunting D, Sanche L (2005) J Phys Chem B 109:4796.

    Article  CAS  Google Scholar 

  7. International Commission on Radiation Units and Measurements (1979) ICRU Report 31, ICRU, Washington.

    Google Scholar 

  8. LaVerne JA, Pimblott SM (1995) Radiat Res 141:208.

    Article  CAS  Google Scholar 

  9. Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser M-J, Jay-Gerin J-P (1998) Radiat Phys Chem 51:229.

    Article  CAS  Google Scholar 

  10. Bartels DM, Cook AR, Mudaliar M, Jonah CD (2000) J Phys Chem A 104:1686.

    Article  CAS  Google Scholar 

  11. Barrios R, Skurski P, Simons J (2002) J Phys Chem B 10:7991.

    Article  CAS  Google Scholar 

  12. Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Am Chem Soc 126:6441.

    Article  CAS  Google Scholar 

  13. (a) Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Phys Chem A 108:2999; (b) Berdys J, Skurski P, Simons JJ (2004) Phys Chem B 108:5800.

    Google Scholar 

  14. Dabkowska I, Rak J, Gutowski M (2005) Eur Phys J D 35:429.

    Article  CAS  Google Scholar 

  15. Gu J, Xie Y, Schaefer HF III (2006) Chem Phys Chem 7:1885.

    CAS  Google Scholar 

  16. Adams RLP, Knowler JT, Leader DP (1981) The Biochemistry of the Nucleic Acids, 10th edn. Chapman and Hall, New York.

    Google Scholar 

  17. Swarts S, Sevilla M, Becker D, Tokar C, Wheeler K (1992) Radiat Res 129:333.

    Article  CAS  Google Scholar 

  18. Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2002) Radiat Res 157:227.

    Article  Google Scholar 

  19. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) J Am Chem Soc 109:3559.

    Article  CAS  Google Scholar 

  20. Dugal P, Huels MA, Sanche L (1999) Radiat Res 151:325.

    Article  CAS  Google Scholar 

  21. Dugal P, Abdoul-Carime H, Sanche L (2000) J Phys Chem B 104:5610.

    Article  CAS  Google Scholar 

  22. Abdoul-Carime H, Dugal PC, Sanche L (2000) Radiat Res 153:23.

    Article  CAS  Google Scholar 

  23. Kimball Physics Inc., ELG-2 electron gun, http://www.kimphys.com.

    Google Scholar 

  24. Nagesha K, Gamache J, Bass AD, Sanche L (1997) Rev Sci Instrum 68:3883.

    Article  CAS  Google Scholar 

  25. Marsolais RM, Deschênes M, Sanche L (1989) Rev Sci Instrum 60:2724.

    Article  CAS  Google Scholar 

  26. Meesungnoen J, Jay-Gerin J-P, Filali-Mouhim A, Mankhetkorn S (2002) Radiat Res 158:657.

    Article  CAS  Google Scholar 

  27. Zheng Y, Cloutier P, Wagner JR, Sanche L (2004) Rev Sci Instrum 75:4534.

    Article  CAS  Google Scholar 

  28. Kimmel GA, Orlando TM (1995) Phys Rev Lett 75:2606.

    Article  CAS  Google Scholar 

  29. Abdoul-Carime H, Dugal PC, Sanche L (2000) Surf Sci 451:102.

    Article  CAS  Google Scholar 

  30. Sanche L (1995) Scanning Microscopy 9:619.

    CAS  Google Scholar 

  31. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Science 287:1658.

    Article  CAS  Google Scholar 

  32. Mott NF, Massey HSW (1965) The Theory of Atomic Collisions, Clarendon, Oxford.

    Google Scholar 

  33. Schulz GJ (1973) Rev Mod Phys 45:378,423.

    Google Scholar 

  34. Allan M (1989) J Electr Spectr Rel Phenom 48:219.

    Article  CAS  Google Scholar 

  35. Sanche L (1991) Excess Electrons in Dielectric Media, Jay-Gerin J-P and Ferradini C (eds), CRC Press, Boca Raton.

    Google Scholar 

  36. Christophorou LG (1984) Electron-Molecule Interactions and Their Applications, Academic Press, Orlando.

    Google Scholar 

  37. Massey HSW (1976) Negative Ions, University Press, London.

    Google Scholar 

  38. Palmer RE, Rous P (1992) Rev Mod Phys 64:383.

    Article  CAS  Google Scholar 

  39. Sanche L (2000) Surf Sci 451:82.

    Article  CAS  Google Scholar 

  40. Folkard M, Prise KM, Vojnovic B, Davies S, Roper MJ, Michael BD (1993) Int J Radiat Biol 64:651.

    Article  CAS  Google Scholar 

  41. Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Méd Sci 16:1281.

    Google Scholar 

  42. Huels MA, Boudaïffa B, Cloutier P, Hunting D, Sanche L (2003) J Am Chem Soc 125:4467.

    Article  CAS  Google Scholar 

  43. Boudaiffa B, Hunting DJ, Cloutier P, Huels MA, Sanche L (2000) Int J Radiat Biol 76:1209.

    Article  CAS  Google Scholar 

  44. Bass AD, Parenteau L, Huels MA, Sanche L (1998) J Chem Phys 109:8635.

    Article  CAS  Google Scholar 

  45. Huels MA, Parenteau L, Sanche L (1997) Chem Phys Lett 279:223.

    Article  CAS  Google Scholar 

  46. Sieger MT, Simpson WC, Orlando TM (1998) Nature 394:554.

    Article  CAS  Google Scholar 

  47. Pan X, Cloutier P, Hunting D, Sanche L (2003) Phys Rev Lett 90:208102-1–208102-4.

    Google Scholar 

  48. Abdoul-Carime H, Cloutier P, Sanche L (2001) Radiat Res 155:625.

    Article  CAS  Google Scholar 

  49. Pan X, Abdoul-Carime H, Cloutier P, Bass AD, Sanche L (2005) Radiat Phys Chem 72:193.

    Article  CAS  Google Scholar 

  50. Antic D, Parenteau L, Lepage M, Sanche L (1999) J Phys Chem 103:6611.

    CAS  Google Scholar 

  51. PtasiñS, Denifl S, Grill V, Mörk TD, Scheier P, Gohlke S, Huels MA, Illenberger E (2005) Angew Chem Int Ed 44:1657.

    Google Scholar 

  52. Martin F, Burrow PD, Cai Z, Cloutier P, Hunting DJ, Sanche L (2004) Phys Rev Lett 93:068101.

    Article  CAS  Google Scholar 

  53. Aflatooni K, Gallup GA, Burrow PD (1998) J Phys Chem A 102:6205.

    Article  CAS  Google Scholar 

  54. Panajotovic R, Martin F, Cloutier P, Hunting DJ, Sanche L (2006) Radiat Res 165:452.

    Article  CAS  Google Scholar 

  55. Cai Z, Cloutier P, Hunting D, Sanche L (2006) Radiat Res 165:365.

    Article  CAS  Google Scholar 

  56. Henke BL, Knauer JP, Premaratne K (1981) J Appl Phys 52:1509.

    Article  CAS  Google Scholar 

  57. Henke BL, Smith JA, Attwood DT (1977) J Appl Phys 48:1852.

    Article  CAS  Google Scholar 

  58. Pan X, Sanche L (2005) Phys Rev Lett 94:198104.

    Article  CAS  Google Scholar 

  59. Crewe AV, Isaacson M, Johnson D (1971) Nature 231:262.

    Article  CAS  Google Scholar 

  60. Herve du Penhoat MA, Huels MA, Cloutier P, Jay-Gerin JP, Sanche L (2001) J Chem Phys 114:5755.

    Article  CAS  Google Scholar 

  61. Abdoul-Carime H, Sanche L (2001) Radiat Res 156:151.

    Article  CAS  Google Scholar 

  62. Abdoul-Carime H, Sanche L (2002) Int J Radiat Biol 78:89.

    Article  CAS  Google Scholar 

  63. Cai Z, Dextraze M-E, Cloutier P, Hunting D, Sanche L (2006) J Chem Phys 124:024705.

    Article  CAS  Google Scholar 

  64. Petrovykh DY, Kimura-Suda H, Tarlov M J, Whitman LJ (2004) Langmuir 20:429.

    Article  CAS  Google Scholar 

  65. Ray SG, Daube SS, Naaman R (2005) PNAS 102:15.

    Article  CAS  Google Scholar 

  66. Aqua T, Naaman R, Daube SS (2003) Langmuir 19:10573.

    Article  CAS  Google Scholar 

  67. Pan X, Sanche L (to be published).

    Google Scholar 

  68. Huels MA, Parenteau L, Sanche L (2004) J Phys Chem B 108:16303.

    Article  CAS  Google Scholar 

  69. Zheng Y, Cloutier P, Hunting DJ, Sanche L, Wagner JR (2005) J Am Chem Soc 127:16592.

    Article  CAS  Google Scholar 

  70. Zheng Y, Cloutier P, Hunting DJ, Wagner JR, Sanche L (2006) J Chem Phys 124:64710.

    Article  CAS  Google Scholar 

  71. Zheng Y, Wagner R, Sanche L (2006) Phys Rev Lett 96:208101.

    Article  CAS  Google Scholar 

  72. Zheng Y, Cloutier P, Hunting DJ, Wagner JR, Sanche L (2004) J Am Chem Soc 126:1002.

    Article  CAS  Google Scholar 

  73. Abdoul-Carime H, Gohlke S, Fischbach E, Scheike J, Illenberger E (2004) Chem Phys Lett 387:267.

    Article  CAS  Google Scholar 

  74. Becker D, Bryant-Friedrich A, Trzasko C, Sevilla MD (2003) Radiat Res 160:174.

    Article  CAS  Google Scholar 

  75. Becker D, Razskazovskii Y, Callaghan M, Sevilla MD (1996) Radiat Res 146:361.

    Article  CAS  Google Scholar 

  76. Shukla L, Pazdro R, Becker D, Sevilla MD (2005) Radiat Res 163:591.

    Article  CAS  Google Scholar 

  77. Range K, McGrath MJ, Lopez X, York DM (2004) J Am Chem Soc 126:1654.

    Article  CAS  Google Scholar 

  78. Rowntree P, Sambe H, Parenteau L, Sanche L (1993) Phys Rev B 47:4537.

    Article  CAS  Google Scholar 

  79. Hotop H, Ruf MW, Llan M, Fabrikant II (2003) Adv Atom Mol Opt Phys 49:85.

    CAS  Google Scholar 

  80. Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Am Chem Soc 125:6551.

    Google Scholar 

  81. Lévesque PL, Michaud M, Cho W, Sanche L (2005) J Chem Phys 122:224704.

    Article  CAS  Google Scholar 

  82. Winstead C, McKoy V (2007) Phys Rev Lett 98:113201.

    Article  CAS  Google Scholar 

  83. Caron LG, Sanche L (2003) Phys Rev Lett 91:113201; (2004) Phys Rev A 70:032719; (2005)72:32726.

    Google Scholar 

  84. Pan X, Sanche L (2006) Chem Phys Lett 421:404.

    Article  CAS  Google Scholar 

  85. Solomun T, Illenberger E (2004) Chem Phys Lett 396:448.

    Article  CAS  Google Scholar 

  86. Solomun T, Hultschig C, Hultschig C, Illenberger E (2005) Eur Phys J D 35:437.

    Article  CAS  Google Scholar 

  87. Tanabe T, Noda K, Saito M, Starikov EB, Tateno M (2004) Phys Rev Lett 93:043201.

    Article  CAS  Google Scholar 

  88. Ladik J, Fruechtl H, Otto P, Jöger J (1993) J Mol Struct 297:215.

    Article  CAS  Google Scholar 

  89. Ptasiñska S, Sanche L (2006) J Chem Phys 125:144713.

    Article  CAS  Google Scholar 

  90. Ptasiñska S, Sanche L (2007) Phys Chem Chem Phys 14:1730.

    Article  CAS  Google Scholar 

  91. Ptasiñska S, Sanche L (2007) Phys Rev E 75:031915.

    Article  CAS  Google Scholar 

  92. Abdoul-Carime H, Langer J, Huels MA, Illenberger E (2005) Eur Phys J D 35:399.

    Article  CAS  Google Scholar 

  93. Denifl S, Ptasiñ S, Probst M, Hrušák J, Scheier P, Mörk TD (2004) J Phys Chem A 108:6562.

    Article  CAS  Google Scholar 

  94. Denifl S, Ptasiñska S, Cingel M, Matejcik S, Scheier P, Mörk TD (2003) Chem Phys Lett 377:74.

    Article  CAS  Google Scholar 

  95. Ptasiñska S, Denifl S, Gohlke S, Scheier P, Illenberger E, Mörk TD (2006) Angew Chem Int Ed 45:1893.

    Article  CAS  Google Scholar 

  96. Burrow PD, Gallup GA, Scheer AM, Denifl S, Ptasiñska S, Mörk TD, Scheier P (2006) J Chem Phys 124:124310.

    Article  CAS  Google Scholar 

  97. Denifl S, Zappa F, Möhr I, Lecointre J, Probst M, Mörk TD, Scheier P (2006) Phys Rev Lett 97:043201.

    Article  CAS  Google Scholar 

  98. Hubert D, Beikircher M, Denifl S, Zappa F, Matejcik S, Bacher A, Grill V, Mörk TD, Scheier P (2006) J Chem Phys 125:084304.

    Article  CAS  Google Scholar 

  99. Ptasiñska S, Denifl S, Grill V, Mörk TD, Illenberger E, Scheier P (2005) Phys Rev Lett 95:093201.

    Article  CAS  Google Scholar 

  100. Ptasiñska S, Denifl S, Mróz B, Brobst M, Grill V, Illenberger E, Scheier P, Mörk TD (2005) J Chem Phys 123:124302.

    Article  CAS  Google Scholar 

  101. Sulzer P, Ptasiñska S, Zappa F, Mielewska B, Milosavljevic AR, Scheier P, Mark TD, Bald I, Gohlke S, Huels MA, Illenberger E (2006) J Chem Phys 125:044304.

    Article  CAS  Google Scholar 

  102. Abdoul-Carime H, Gohlke S, Illenberger E (2004) Phys Rev Lett 92:168103.

    Article  CAS  Google Scholar 

  103. Ptasiñska S, Denifl S, Scheier P, Illenberger E, Mörk TD (2005) Angew Chem Int Ed 44:6941.

    Article  CAS  Google Scholar 

  104. Caron LG, Sanche L (2005) Phys Rev A 72:032726.

    Article  CAS  Google Scholar 

  105. Caron LG, Sanche L (2006) Phys Rev A 73:062707.

    Article  CAS  Google Scholar 

  106. Tao NJ, Lindsay SM (1989) Biopolymers 28:1019.

    Article  CAS  Google Scholar 

  107. Simpson WC, Sieger MT, Orlando T, Parenteau L, Naghesha K, Sanche L (1997) J Chem Phys 107:8668.

    Article  CAS  Google Scholar 

  108. Casaes RN, Paul JB, McLaughlin RP, Saykally RJ, van Mourik T (2004) J Phys Chem A 108:10989; Choi MY, Miller RE (2005) Phys Chem Chem Phys 7:3565.

    Article  CAS  Google Scholar 

  109. Whitson KB, Lukan AM, Marlowe RL, Lee SA, Anthony L, Rupprecht A (1998) Phys Rev E 58:2370; Cavanaugh D, Lee SA (2002) J Biomol Struct Dyn 19:709.

    Article  CAS  Google Scholar 

  110. Gu J, Wang J, Lesczynski J (2006) J Am Chem Soc 128:322.

    Google Scholar 

  111. Li X, Sevilla MD, Sanche L (2003) J Am Chem Soc 125:3668.

    Google Scholar 

  112. Dabkowska I, Rak J, Gutowski M (2005) Eur Phys J D 35:29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sanche, L. (2008). Low Energy Electron Damage To DNA. In: Shukla, M.K., Leszczynski, J. (eds) Radiation Induced Molecular Phenomena in Nucleic Acids. Challenges and Advances In Computational Chemistry and Physics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8184-2_19

Download citation

Publish with us

Policies and ethics