Skip to main content

Study Cases of Enzymatic Processes

  • Chapter
Enzyme Biocatalysis

Peptides are heteropolymers composed by amino acid residues linked by peptidic bonds between the carboxyl group of one amino acid residue and the α-amino group of the next one. The definition is rather vague in terms of chain length, peptides ranging from two residues to a few dozens residues. Its upper limit of molecular mass has been set rather arbitrarily in 6,000 Da. The size of the molecule determines the technology most suitable for its production. Recombinant DNA technology is particularly suitable for the synthesis of large peptides and proteins, as illustrated by the case of insulin and other hormones (Walsh 2005). Chemical synthesis is a viable technology for the production of small and medium size peptides ranging from about 5 to 80 residues (Kimmerlin and Seebach 2005). Enzymatic synthesis is more restricted and has been hardly applied for the synthesis of peptides exceeding 10 residues. Its potential relies on the synthesis of very small peptides and, in fact, most of the cases reported correspond to dipeptides and tripeptides (Kumar and Bhalla 2005). In this sense, the technologies for peptide production are not competitive with each other in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen L, Tom J, Burnier J et al. (1991) Engineering subtilisin and its substrates for efficient ligation of peptide bond in aqueous solution. Biochemistry 30:4151-4159

    Article  Google Scholar 

  • Adamczak M, Hari Krishna S (2004) Strategies for improving enzymes for efficient biocatalysis. Food Technol Biotech 42(4):251-264

    CAS  Google Scholar 

  • Ahn, JM, Boyle NA, Macdonald MT et al. (2002) Peptidomimetics and peptide backbone modifi-cations. Mini Rev Med Chem 2(5):463-473

    Article  CAS  Google Scholar 

  • Albericio F (2000) Orthogonal protecting groups for Nα -amino and C-terminal carboxyl functions in solid-phase synthesis. Biopolymers (Peptide Sci) 55:123-139

    Article  CAS  Google Scholar 

  • Ambulos NP, Bibbs L, Bonewald LF et al. (2000) Analysis of synthetic peptides In: Kates SA, Albericio F (eds). Solid-phase synthesis: a practical guide. Marcel Dekker, New York, pp 751-789

    Google Scholar 

  • Amorim Fernandes J, McAlphine M, Halling P (2005) Operational stability of subtilisin CLECs in organic solvents in repeated batch and continuous operation. Biochem Eng J 24:11-15

    Article  CAS  Google Scholar 

  • Andersson L, Blomberg L, Flegel M et al. (2000) Large-scale synthesis of peptides. Biopolymers 55:227-250

    Article  CAS  Google Scholar 

  • Arnold F (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253-257

    Article  CAS  Google Scholar 

  • Aso K (1989) Enzymatic approach to the synthesis of a lysine-containing sweet peptide, N -acetyl-L-phenylalanyl-L-lysine. Agr Biol Chem 53:729-733

    CAS  Google Scholar 

  • Baca M, Muir TW, Schn ölzer M et al. (1995) Chemical ligation of cysteine-containing pep-tides: synthesis of a 22 kDa tethered dimer of HIV-1 protease. J Am Chem Soc 117:1881-1887

    Article  CAS  Google Scholar 

  • Baile C, McLaughlin C, Della-Fera M (1986) Role of cholecystokinin and opioid peptide in control food intake. Physiol Rev 66:172-234

    CAS  Google Scholar 

  • Banfi D, Mutter M, Patiny L (2004) Versatile synthesis of Boc protected hydrazinoacetic acid and its application to the chemoselective ligation of TASP molecules. Protein Peptide Lett 11 (6):539-542

    Article  CAS  Google Scholar 

  • Barberis S, Illanes A (1996) Cat álisis enzim ática en fase org ánica. Ing Quim March :165-173

    Google Scholar 

  • Barberis S, Quiroga E, Arrib ére MC et al. (2002) Peptide synthesis in aqueous-organic biphasic systems catalyzed by a protease isolated from Morrenia brachystephana (Asclepiadaceae). J Mol Catal B: Enzym 17:39-47

    Article  CAS  Google Scholar 

  • Barberis S, Quiroga E, Morcelle S et al. (2006) Study of phytoproteases stability in aqueous-organic biphasic systems using linear free energy relationships. J Mol Catal B: Enzym 38:95-103

    Article  CAS  Google Scholar 

  • Barlos K, Gatos D (1999) Fluorenylmethyloxycarbonyl/tbutyl-based convergent protein synthe-sis. Biopolymers 51(4):266-278

    Article  CAS  Google Scholar 

  • Barlos K, Chatzi O, Gatos D et al. (1991) Studies on anchoring of Fmoc-amino acids and peptide cleavage. Internat J Peptide Protein Res 37(6):513-520

    CAS  Google Scholar 

  • Bj örup P, Adlercreutz P, Clap és P (1999) Useful methods in enzymatic synthesis of peptides: a comparative study focusing on kinetically controlled synthesis of Ac-Phe-Leu-NH2 catalyzed by α-chymotrypsin. Biocatal Biotransform 17(5):319-345

    Article  Google Scholar 

  • Bordusa F (2002) Proteases in organic synthesis. Chem Rev 102:4817-4867

    Article  CAS  Google Scholar 

  • Bordusa F, Ullmann D, Elsner C et al. (1997) Substrate mimetics mediated peptide synthesis: an irreversible ligation strategy that is independent of substrate specificity. Angew Chem Int Edit 36:2473-2475

    Article  CAS  Google Scholar 

  • Brahms S, Brahms J (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol 138:149-178

    Article  CAS  Google Scholar 

  • Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nature Rev 2:587-593

    Article  CAS  Google Scholar 

  • Bruckdorfer T, Marder O, Albericio F (2004) From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol 5:29-43

    Article  CAS  Google Scholar 

  • Cabezas M, Del Campo C, Llama E et al. (1990) Organic reactions catalyzed by insolubilized enzymes. Part II. Influence of structure of the acyl donor in selectivity of α-chymotrypsin. J Mol Catal 62(3):353-367

    Article  CAS  Google Scholar 

  • Calvo JC, Choconta KC, Diaz D et al. (2003) An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients’ sera. J Med Chem 46(25):5389-5394

    Article  CAS  Google Scholar 

  • Cao L, van Rantwijk F, Sheldon R (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361-1364

    Article  CAS  Google Scholar 

  • Cao L, van Langen L, Sheldon R (2003) Immobilised enzymes: carrier-bound or carrier free? Curr Opin Biotech 14:387-394

    Article  CAS  Google Scholar 

  • Capellas M, Caminal G, Gonz ález G et al. (1996) Enzymic synthesis of a CCK-8 tripeptide frag-ment in organic media. Biotechnol Bioeng 50:700-708

    Article  CAS  Google Scholar 

  • Capellas M, Caminal G, Gonz ález G et al. (1997) Enzymatic condensation of cholecystokinin CCK-8 (4-6) and CCK-8 (7-8) peptide fragments in organic media. Biotechnol Bioeng 56 (4):456-463

    Article  CAS  Google Scholar 

  • Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Edit 39:2226-2254

    Article  CAS  Google Scholar 

  • Castro R (2000) Properties of soluble α-chymotrypsin in neat glycerol and water. Enzyme Microb Technol 27:143-150

    Article  CAS  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, Oxford, 341 pp

    Google Scholar 

  • Chellapan S, Jasmin C, Basheer S et al. (2006) Production, purification and partial characterization of a novel protease from Engyodontium album BTMFS 10 under solid state fermentation. Proc Biochem 41:956-961

    Article  CAS  Google Scholar 

  • Clap és P, Mata-Alvarez J, Valencia G et al. (1989) Continuous enzymatic synthesis of Z-kyotorphin amide in an enzyme-immobilized fixed-bed reactor. J Chem Technol Biotechnol 45:191-202

    Google Scholar 

  • Clap és P, Adlercreutz P, Mattiasson B (1990a) Enzymatic peptide synthesis in organic media: a comparative study of water-miscible and water-immiscible solvent systems. J Biotechnol 15 (4):323-338

    Article  Google Scholar 

  • Clap és P, Adlercreutz P, Mattiasson B (1990b) Enzymatic peptide synthesis in organic media: nu-cleophile specificity and medium engineering in α-chymotripsin-catalyzed reactions. Biotech-nol Appl Biochem 12:376-386

    Google Scholar 

  • Clap és P, Caminal G, Feliu JA et al. (2000) Peptide synthesis in non-aqueous media. In: Gupta MN (ed). Methods in non-aqueous enzymology. Birkh äuser, Bassel, pp 110-132

    Google Scholar 

  • Clap és P, Espelt L, Navarro M et al. (2001) Highly concentrated water-in-oil emulsions as novel reaction media for protease-catalysed kinetically controlled peptide synthesis. J Chem Soc Perk T 2:1394-1399

    Article  CAS  Google Scholar 

  • Clark D (2004) Characteristics of nearly dry enzymes in organic solvents: implications for bio-catalysis in the absence of water. Philos Trans R Soc London B 359:1299-1307

    Article  CAS  Google Scholar 

  • Du Vigneaud V, Ressler C, Swan J et al. (1953) The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc 75:4879-4880

    Article  CAS  Google Scholar 

  • Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74:443-450

    Article  CAS  Google Scholar 

  • Feli ú J, De Mas C, L ópez-Santín J (1995) Studies on papain action in the synthesis of Gly-Phe in two-liquid-phase media. Enzyme Microb Technol 17:882-887

    Article  Google Scholar 

  • Filippova I, Lysogorskaya E (2003) Modified proteinases in peptide synthesis in organic media. Bioorg Khim 29(5):544-550

    Google Scholar 

  • Fischer U, Zeitschel U, Jakubke H (1991) Chymotrypsin-catalyzed peptide synthesis in an acetonitrile-water-system: studies on the efficiency of nucleophiles. Biomed Biochim Acta 50 (10-11):S131-S135

    CAS  Google Scholar 

  • Fit é M, Clap és P, L ópez-Santín J et al. (2002) Integrated process for the enzymatic synthesis of the octapeptide PhAcCCK-8. Biotechnol Progr 18:1214-1220

    Article  CAS  Google Scholar 

  • Floersheimer A, Kula M, Schuetz H et al. (1989) Continuous production of kyotorphin. Biotechnol Bioeng 33(11):1400-1405

    Article  CAS  Google Scholar 

  • Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports: principles and applications. J Immunol Meth 267(1):13-26

    Article  CAS  Google Scholar 

  • Gill I, Valivety R (2002) Pilot-scale enzymatic synthesis of bioactive oligopeptides in eutectic-based media. Org Proc Res Develop 6(5):684-691

    Article  CAS  Google Scholar 

  • Gill I, López-Fandiño R, Vulfson E (1995) Enzymatic oligopeptide synthesis using a minimal protection strategy: sequential assembly of a growing oligopeptide chain. J Am Chem Soc 117 (23):6175-6177

    Article  CAS  Google Scholar 

  • Gill I, López-Fandiño R, Jorba X et al. (1996) Biologically active peptides and enzymatic ap-proaches to their production. Enzyme Microb Technol 18:162-183

    Article  CAS  Google Scholar 

  • Grunberg R, Domgall I, Gunther R et al. (2000) Peptide bond formation mediated by substrate mimetics. Eur J Biochem 267:7024-7030

    Article  CAS  Google Scholar 

  • Guis án J, Polo E, Aguado J et al. (1997) Immobilization-stabilization of thermolysin onto activated agarose gels. Biocatal Biotransfor 15:159-173

    Article  Google Scholar 

  • Guzm án F, Jaramillo K, Salazar LM et al. (2003) H-NMR structures of the Plasmodum falci-parum 1758 erythrocyte binding peptide analogues and protection against malaria. Life Sci 71 (23):2773-2785

    Article  Google Scholar 

  • Guzm án F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10(2):279-314

    Google Scholar 

  • Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: the-ory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16:178-206

    Article  CAS  Google Scholar 

  • Halling PJ, Eichhorn U, Khul P et al. (1995) Thermodynamics of solid-to-solid conversion and application to enzymic peptide synthesis. Enzyme Microb Technol 17:601-606

    Article  CAS  Google Scholar 

  • Hamel E, Covell DG (2002) Antimitotic peptides and depsipeptides. Curr Med Chem Anti-Cancer Agents 2(1):19-53

    Article  CAS  Google Scholar 

  • Hou R, Zhang N, Li G et al. (2005) Synthesis of the tripeptide RGD amide by a combination of chemical and enzymatic methods. J Mol Catal B: Enzym 37:9-15

    Article  CAS  Google Scholar 

  • Hou R, Yang Y, Huang Y et al. (2006a) Alcalase-catalyzed, kinetically controlled synthesis of a precursor dipeptide of RGDS in organic solvents. Prep Biochem Biotech 36(1):93-105

    Article  CAS  Google Scholar 

  • Hou R, Yang Y, Li G et al. (2006b) Synthesis of a precursor dipeptide of RGDS (Arg-Gly-Asp-Ser) catalysed by the industrial protease alcalase. Biotechnol Appl Biochem 44(2):73-80

    Article  CAS  Google Scholar 

  • Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of pep-tides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82(15):5131-5135

    Article  CAS  Google Scholar 

  • Houghten RA, Wilson DB, Pinilla C (2000) Drug discovery and vaccine development using mixture-based synthetic combinatorial libraries. Drug Discov Today 5:276-285

    Article  CAS  Google Scholar 

  • Hudson E, Eppler, Clark D (2005) Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotech 16:637-643

    Article  CAS  Google Scholar 

  • Illanes A, Fajardo A (2001) Kinetically controlled synthesis of ampicillin with immobilized peni-cillin acylase in the presence of organic cosolvents. J Mol Catal B: Enzym 11(4-6):587-595

    Article  CAS  Google Scholar 

  • Illanes A, Wilson L (2003) Enzyme reactor design under thermal inactivation. Crit Rev Biotechnol 23 (1):61-93

    Article  CAS  Google Scholar 

  • Illanes A, Anjarí S, Altamirano C et al. (2004) Optimization of cephalexin synthesis with immobi-lized penicillin acylase in ethylene glycol medium at low temperatures. J Mol Catal B: Enzym 30:95-103

    Article  CAS  Google Scholar 

  • Jakubke H, Kuhl P, Konnecke A (1985) Basic principles of protease-catalyzed peptide bond for-mation. Angew Chem Int Edit 24:85-93

    Article  Google Scholar 

  • Johnson EC, Malito E, Shen Y et al. (2007) Insights from atomic-resolution X-ray structures of chemically synthesized HIV-1 protease in complex with inhibitors. J Mol Biol 373(3):573-586

    Article  CAS  Google Scholar 

  • Kasche V (1996) Proteases in peptide synthesis. In: Beynon R, Nond J (eds). Proteolytic enzymes -a practical approach. IRL Press, Oxford, pp 125-143

    Google Scholar 

  • Kimmerlin T, Seebach D (2005) A100 years of peptide synthesis: ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J Pept Res 65:229-260

    Article  CAS  Google Scholar 

  • Kimura Y, Nakanishi K, Matsuno R (1990a) Enzymatic synthesis of precursor of Leu-enkephalin in water-immiscible organic solvent systems. Enzyme Microb Tech 12:272-280

    Article  CAS  Google Scholar 

  • Kimura Y, Muraya K, Araki Y et al. (1990b) Synthesis peptides consisting of essential amino acids by a reactor system using three proteinases and an organic solvent. Agr Biol Chem 54:3331-3333

    CAS  Google Scholar 

  • Klibanov A (1997) Why are enzymes less active in organic solvents than in water? TIBTECH 15:97-101

    CAS  Google Scholar 

  • Kumar D, Bhalla T (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726-736

    Article  CAS  Google Scholar 

  • Lei H, Chen L, Li X et al. (2004) The preparation of catalytically active papain immobilized on magnetic composite microspheres. Enzyme Microb Technol 35:15-21

    Article  CAS  Google Scholar 

  • Lioy E, Suarez J, Guzman F et al. (2001) Synthesis, biological, and immunological properties of cyclic peptides from Plasmodium falciparum merozoite surface protein-1. Angewand Chem Internat Ed 40(14):2631-2635

    Article  CAS  Google Scholar 

  • Liu P, Gui-Ling T, Kin-Sing L et al. (2002) Full enzymatic synthesis of a precursor of bioactive pentapeptide OGP (10-14) in organic solvents. Tetrahed Lett 43:2423-2425

    Article  CAS  Google Scholar 

  • Lloyd-Williams P, Giralt E (2000). Solid-phase convergent approaches to the synthesis of native peptides and proteins. In: Kates SA, Albericio F (eds). Solid-phase synthesis: a practical guide. Marcel Dekker, New York, pp 377-418

    Google Scholar 

  • Lombard C, Saulnier J, Wallach J (2005) Recent trends in protease-catalyzed peptide synthesis. Protein Peptide Lett 12:621-629

    Article  CAS  Google Scholar 

  • Lou W, Zong M, Wu H (2004) Enhanced activity, enantioselectivity and stability of papain in asymmetric hydrolysis of D ,L-p-hydroxyphenylglycine methyl ester with ionic liquid. Biocatal Biotransform 22(3):171-176

    Article  CAS  Google Scholar 

  • Lu YA, Tam JP (2005) Peptide ligation by a reversible and reusable C-terminal thiol handle. Org Lett 7(22):5003-5006

    Article  CAS  Google Scholar 

  • Manabe K, Mori Y, Wakabayashi T et al. (2000) Organic synthesis inside particles in water: Lewis acid-surfactant-combined catalysts for organic reactions in water using colloidal dispersions as reaction media. J Am Chem Soc 122:7202-7207

    Article  CAS  Google Scholar 

  • Meng L, Joshi R, Eckstein H (2006) Application of enzymes for the synthesis of the cholecys-tokinin pentapeptide (CCK-5): a contribution to green chemistry. Chimica Oggi 24(3):50-53

    CAS  Google Scholar 

  • Merrifield B (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149-2154

    Article  CAS  Google Scholar 

  • Merrifield B (1986) Solid phase synthesis. Science 232:341-347

    Article  CAS  Google Scholar 

  • Merrifield B (1996) The chemical synthesis of proteins. Protein Sci 5:11947-11951

    Article  Google Scholar 

  • Mesiano A, Beckman E, Russell A (1999) Supercritical biocatalysis. Chem Rev 99:623-634

    Article  CAS  Google Scholar 

  • Miyazawa T, Nakajo S, Nishikawa M et al. (2001a) Chymotrypsin-catalysed peptide synthesis via the kinetically controlled approach using activated esters as acyl donors in organic solvents with low water content: incorporation of non-protein amino acids into peptides. J Chem Soc Perk 1:82-86

    Article  Google Scholar 

  • Miyazawa T, Tanaka K, Ensatsu E et al. (2001b) Broadening of the substrate tolerance of α-chymotrypsin by using the carbamoylmethyl ester as an acyl donor in kinetically controlled peptide synthesis. J Chem Soc Perk T 1 1:87-93

    Google Scholar 

  • Murakami Y, Yoshida T, Hayashi S et al. (2000) Continuous enzymatic production of peptide precursor in aqueous/organic biphasic medium. Biotechnol Bioeng 69:57-65

    Article  CAS  Google Scholar 

  • Nakanishi K, Takeuchi A, Matsuno R (1990) Long term continuous synthesis of aspartame precur-sor in a column reactor with an immobilized thermolysin. Appl Microbiol Biot 32:633-636

    Article  CAS  Google Scholar 

  • Nardin EH, Calvo-Calle JM, Oliveira GA et al. (1998). Plasmodium falciparum polyoximes: highly immunogenic synthetic vaccines constructed by chemoselective ligation of repeat B-cell epi-topes and a universal T-cell epitope of CS protein. Vaccine 16:590-600

    Article  CAS  Google Scholar 

  • Nilsson B, Soellner M, Raines R (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91-118

    Article  CAS  Google Scholar 

  • Obreg ón WD, Arrib ére MC, Morcelle Del Valle S et al. (2001) Two new cysteine endopeptidases obtained from the latex of Araujia hortorum fruits. J Protein Chem 20:317-325

    Article  Google Scholar 

  • Ogino H, Uchiho T, Yokoo J et al. (2001) Role of intermolecular disulfide bonds of the organic solvent stable PST-01 protease in its organic solvent stability. Appl Environ Microb 67:942-947

    Article  CAS  Google Scholar 

  • Park S, Kazlauskas R (2003) Biocatalysis in ionic liquids - advantages beyond green technology. Curr Opin Biotechnol 14:432-437

    Article  CAS  Google Scholar 

  • Patarroyo JH, Guzman F (2004) Peptideos sinteticos como vacinas. In: De Almeida MR, Borem A, Franco GR (eds). Biotecnologia e saude. Ed. Folha de Viçosa, Viçosa, pp 113-139

    Google Scholar 

  • Patarroyo ME, Amador R, Clavijo P et al. (1988) A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 332:158-161

    Article  CAS  Google Scholar 

  • Priolo N, Morcelle Del Valle S, Arrib ére MC et al. (2000) Isolation and characterization of cysteine protease from the latex of Araujia hortorum fruits. J Prot Chem 19:39-49

    Article  CAS  Google Scholar 

  • Quiroga E, Priolo N, Marchese J et al. (2005) Behaviour of araujiain, a new cystein phytoprotease, in organic media with low water content. Electron J Biotechnol 9:18-25

    Article  CAS  Google Scholar 

  • Quiroga E, Priolo N, Marchese J et al. (2006) Stability of araujiain, a novel plant protease, in different organic systems. Acta Farmacol Bonaer 24(2):204-208

    Google Scholar 

  • Rance M, Sorensen OW, Bodenhausen G et al. (1983) Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117 (2):479-485

    Article  CAS  Google Scholar 

  • Richards A, Gill I, Vulfson E (1993) Continuous enzymatic production of oligopeptides: synthesis of an enkephalin pentapeptide in a multistage bioreactor. Enzyme Microb Technol 15(11):928-935

    Article  CAS  Google Scholar 

  • Sarabia F, Chammaa S, Ruiz, AS et al. (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11(10):1309-1332

    CAS  Google Scholar 

  • Schmid A, Dordick J, Hauer B et al. (2001) Industrial biocatalysis today and tomorrow. Nature 409:258-268

    Article  CAS  Google Scholar 

  • Schwartz GJ, Netterville L, McHugh P et al. (1991) Gastric loads potentiate inhibition of food intake produced by a cholecystokinin analogue. Am J Physiol Reg 261(5 30-5):R1141-R1146

    Google Scholar 

  • Schwarz A, Wandrey C, Steinke D et al. (1992) A two-step enzymatic synthesis of dipeptides. Biotechnol Bioeng 39(2):132-140

    Article  CAS  Google Scholar 

  • Sinisterra J, Alcantara A (1993) Synthesis of peptides catalyzed by enzymes: a practical overview. J Mol Catal 84(3):327-364

    Article  CAS  Google Scholar 

  • Stewart JM, Young JD (1984) Solid phase peptide synthesis, 2nd edn. Pierce Chemical Company, Rockford, 176 pp

    Google Scholar 

  • Takagi H, Hirai K, Maeda Y et al. (2000) Engineering subtilisin E for enhanced stability and activity in polar organic solvents. J Biochem Tokyo 127:617-625

    CAS  Google Scholar 

  • Tam JP, Heath WF, Merrifield B (1983) SN2 deprotection of synthetic peptides with a low con-centration of HF in dimethyl sulfide: evidence and application in peptide synthesis. J Am Chem Soc 105(21):6442-6456

    Article  CAS  Google Scholar 

  • Tam JP, Lu Y, Liu CF et al. (1995) Peptide synthesis using unprotected peptides through orthogonal coupling methods. Proc Natl Acad Sci USA 92(26):12485-12489

    Article  CAS  Google Scholar 

  • Thormann M, Thurst S, Hofmann H et al. (1999) Protease-catalyzed hydrolysis of substrate mimet-ics (inverse substrates): a new approach reveals a new mechanism. Biochemistry 38(19):6056-6062

    Article  CAS  Google Scholar 

  • Thurst S, Koksche B (2003) Protease-catalysed peptide synthesis for the site specific incorporation of alpha-fluoroalkyl amino acids into peptides. J Org Chem 68:2290-2296

    Article  CAS  Google Scholar 

  • Trusek-Holownia A (2003) Synthesis of Z-Ala-Phe.OMe, the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalysed by thermolysin. J Biotechnol 102:153-163

    Article  CAS  Google Scholar 

  • Tuchscherer G, Mutter M (1996) Template assisted protein de novo design. Pure Appl Chem 68 (11):2153-2162

    Article  CAS  Google Scholar 

  • van Unen D, Engbersen F, Reinhoudt D (1998) Large acceleration of α-chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents. Biotechnol Bioeng 59:553-556

    Article  Google Scholar 

  • van Unen D, Engbersen F, Reinhoudt D (2001) Studies on the mechanism of crown-ether-induced activation of enzymes in non-aqueous media. Biotechnol Bioeng 75:154-158

    Article  Google Scholar 

  • van Unen D, Engbersen F, Reinhoudt D (2002) Why do crown ethers activate enzymes in organic solvents. Biotechnol Bioeng 77:248-255

    Article  CAS  Google Scholar 

  • Villanueva M, Collins S, Jensen R et al. (1982) Structural requirements for action of cholecys-tokinin on enzyme secretion from pancreatic acini. Am J Phys 242(4):G416-422

    CAS  Google Scholar 

  • Walsh G (2005) Therapeutic insulins and their large scale manufacture. Appl Microbiol Biotechol 67:151-159

    Article  CAS  Google Scholar 

  • West J, Hennen W, Lalonde J et al. (1990) Enzymes as synthetic catalysts: mechanistic and active-site considerations of natural and modified chymotrypsin. J Am Chem Soc 112:5313-5320

    Article  CAS  Google Scholar 

  • Wilson L, Illanes A, Abi án O et al. (2004a) Co-aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media. Bio-macromolecules 5:852-857

    CAS  Google Scholar 

  • Wilson L, Illanes A, Pessela B et al. (2004b) Encapsulation of crosslinked penicillin G acylase aggregates in Lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86:558-562

    Article  CAS  Google Scholar 

  • Xiang H, Xiang G, Lu Z et al. (2004) Total enzymatic synthesis of cholecystokinin CCK-5. Amino Acids 27(1):101-105

    Article  CAS  Google Scholar 

  • Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123(4):526-533

    Article  CAS  Google Scholar 

  • Yin H, Frederick KK, Liu D et al. (2006) Arylamide derivatives as peptidomimetic inhibitors of calmodulin. Org Lett 8(2):223-225

    Article  CAS  Google Scholar 

  • Zaks A, Dodds D (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 2:513-531

    Article  CAS  Google Scholar 

  • Abian A, Wilson L, Mateo C (2002) Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding enzyme molecules. New enzyme derivatives to be used in any reaction medium. J Mol Catal B: Enzym 19-20:295-303

    Article  CAS  Google Scholar 

  • Abian A, Mateo C, Fern ández-Lorente G et al. (2003) Improving the industrial production of 6-APA: enzymatic hydrolysis of penicillin G in the presence of organic solvents. Biotechnol Prog 19:1639-1642

    Article  CAS  Google Scholar 

  • Abraham EP, Newton GGF (1961) The structure of cephalosporin C. Biochem J 79(2):377-393

    CAS  Google Scholar 

  • Aguirre C, Toledo M, Medina V et al. (2002) Effect of cosolvent and pH on the kinetically con-trolled synthesis of cephalexin with immobilised penicillin acylase. Proc Biochem 38(3):351-360

    Article  Google Scholar 

  • Aharonowitz Y, Cohen G (1981) The microbiological production of pharmaceuticals. Scientific Amer 245(3):141-152

    Google Scholar 

  • Alkema WB, de Vries E, Floris R et al. (2003) Kinetics of enzyme acylation and deacylation in the penicillin acylase-catalyzed synthesis of β-lactam antibiotics. Eur J Biochem 270:3674-3683

    Article  CAS  Google Scholar 

  • Alvaro G, Fern ández-Lafuente R, Blanco RM et al. (1990) Immobilization-stabilization of peni-cillin acylase from E. coli. Appl Biochem Biotech 26:186-195

    Article  Google Scholar 

  • Alvaro G, Fern ández-Lafuente R, Rosell CM et al. (1992) Penicillin G acylase from Kluyvera citrophila. New choice as industrial enzyme. Biotechnol Lett 14(4):285-290

    Article  CAS  Google Scholar 

  • Arroyo M, Torres-Guzm án R, de la Mata I et al. (2000) Activation and stabilization of penicillin V acylase from Streptomyces lavendulae in the presence of glycerol and glycols. Biotechnol Prog 16:368-371

    Article  CAS  Google Scholar 

  • Babu PSR, Panda T (1991) The role of phenylacetic acid in biosynthesis of penicillin amidase in E. coli. Bioproc Eng 6:71-74

    Article  CAS  Google Scholar 

  • Báez-Vásquez MA, Adrio JL, Piret JM et al. (1999) Further studies on the bioconversion of peni-cillin G into deacetoxycephalosporin G by resting cells of Streptomyces clavuligerus NP-1. Appl Biochem Biotechnol 81:145-152

    Article  Google Scholar 

  • Baldaro E (1991) Effect of temperature on enzymatic synthesis of cephalosporins. In: Pandit U (ed). Chemistry in healthcare and technology. Plenum Press, New York, pp 237-240

    Google Scholar 

  • Basso A, Biffi S, De Martin L et al. (2001) Quantitative acylation of amino compounds catalysed by penicillin acylase in organic solvent at controlled water activity. Croatica Chem Acta 74(4):757-762

    CAS  Google Scholar 

  • Basso A, De Martin L, Ebert C et al. (2003) Organically modified xerogels as novel tailor-made supports for covalent immobilisation of enzymes (penicillin G acylase). Tetrahed Lett 44:5889-5891

    Article  CAS  Google Scholar 

  • Basso A, Spizzo P, Toniutti M et al. (2006) Kinetically controlled synthesis of ampicillin and cephalexin in highly condensed systems in the absence of a liquid aqueous phase. J Mol Catal B: Enzym 39:105-111

    Article  CAS  Google Scholar 

  • Batchelor FR, Doyle FP, Nayler JHC et al. (1959) Synthesis of penicillin: 6-amino penicillanic acid in penicillin fermentations. Nature 183:257-258

    Article  CAS  Google Scholar 

  • Bruggink A (2001) Synthesis of β-lactam antibiotics. Kluwer Acad Publ, Dordrecht, 335 pp

    Google Scholar 

  • Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Develop 2:128-133

    Article  CAS  Google Scholar 

  • Bryjak J, Trochimczuk AW (2006) Immobilization of lipase and penicillin acylase on hydrophobic carriers. Enzyme Microb Technol 39:573-578

    Article  CAS  Google Scholar 

  • Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzymes aggregates: a simple and effec-tive method for the immobilization of penicillin acylase. Org Lett 2:1361-1364

    Article  CAS  Google Scholar 

  • Cao L, van Langen LM, van Rantwijk F et al. (2001) Cross-linked aggregates of penicillin acylase: robust biocatalysts for the synthesis of β-lactam antibiotics. J Mol Catal B Enzym 11:665-670

    Article  CAS  Google Scholar 

  • Cao L, van Langen LM, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:1-8

    Article  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1991) Fermentation technology, bioprocessing, scale-up and manufac-ture. In: Moses V, Cape RE (eds). Biotechnology: the science and the business. Harwood Aca-demic, New York, pp 167-209

    Google Scholar 

  • Crawford L, Stepan PC, McAda JA et al. (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 13:58-62

    Article  CAS  Google Scholar 

  • de los Ríos AP, Hernández-Fernández FJ, Rubio M et al. (2007) Stabilization of native penicillin G acylase by ionic liquids. J Chem Technol Biotechnol 82:190-195

    Article  CAS  Google Scholar 

  • Demain A (1991) Production of beta-lactam antibiotics and its regulation. Proc Natl Sci Counc Repub China B 15(4):251-265

    CAS  Google Scholar 

  • Demain A, Cho H, Piret JM et al. (2002) Penicillin conversion. US Patent 6383773. Issued on May 7,2002

    Google Scholar 

  • Diender MB, Straathof AJ, Heijnen JJ (1998) Predicting enzyme catalyzed reaction equilibria in cosolvent-water mixtures as function of pH and solvent composition. Biocatal Biotransform 16:275-289

    Article  CAS  Google Scholar 

  • Diender MB, Straathof AJJ, van der Does T (2000) Course of pH during the formation of amoxi-cillin by a suspension-to-suspension reaction. Enzyme Microb Technol 27:576-582

    Article  CAS  Google Scholar 

  • Duggleby HJ, Tolley SP, Hill CP et al. (1995) Penicillin acylase has a single-amino-acid catalytic centre. Nature 373:264-268

    Article  CAS  Google Scholar 

  • Ebert C, Gardossi L, Linda P (1996) Control of enzyme hydration in penicillin acylase catalysed synthesis of amide bond. Tetrahed Lett 37(52):9377-9380

    Article  CAS  Google Scholar 

  • Elander RP (2003) Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol 61(5-6):385-392

    CAS  Google Scholar 

  • Erbeldinger M, Ni X, Halling PJ (1998) Effect of water and enzyme concentration on thermolysin-catalyzed solid-to-solid peptide synthesis. Biotechnol Bioeng 59(1):68-72

    Article  CAS  Google Scholar 

  • Fern ández-Lafuente R, Alvaro G, Blanco RM et al. (1991) Equilibrium controlled synthesis of cephalotin in water-cosolvent systems by stabilized penicillin acylase. Appl Biochem Biotech-nol 27:277-289

    Article  Google Scholar 

  • Fern ández-Lafuente R, Rosell CM, Guisan JM (1995) The use of stabilized penicillin acylase derivatives improves the design of kinetically controlled synthesis. J Mol Catal A: Chemical 101:91-97

    Article  Google Scholar 

  • Fern ández-Lafuente R, Rosell CM, Guisan JM (1996a) Dynamic reaction design of enzymic bio-transformations in organic media: equilibrium-controlled synthesis of antibiotics by penicillin G acylase. Biotechnol Appl Biochem 24:139-143

    Google Scholar 

  • Fern ández-Lafuente R, Rosell CM, Piatkowska B et al. (1996b) Synthesis of antibiotics (cephalo-glycin) catalyzed by penicillin G acylase: evaluation and optimization of different synthetic approaches. Enzyme Microb Technol 19:9-14

    Article  Google Scholar 

  • Fern ández-Lafuente R, Rosell CM, Guisan JM (1998) The presence of methanol exerts a strong and complex modulation of the synthesis of different antibiotics by immobilized penicillin G acylase. Enzyme Microb Technol 23:305-310

    Article  Google Scholar 

  • Fernandez-Lafuente R, Rosell C, Caanan-Haden L et al. (1999) Facile synthesis of artificial en-zyme nano-environments via solid-phase chemistry of immobilized derivatives: dramatic stabi-lization of penicillin acylase versus organic solvents. Enzyme Microb Technol 24:96-103

    Article  CAS  Google Scholar 

  • Ferreira JS, Straathof AJJ, Franco TT et al. (2004) Activity and stability of immobilized penicillin acylase at low pH values. J Mol Catal B: Enzym 27:29-35

    Article  CAS  Google Scholar 

  • Fit é M, Capellas M, Benaiges MD et al. (1997) N -protection of amino acid derivatives catalyzed by penicillin G acylase. Biocatal Biotransform 15:317-332

    Google Scholar 

  • Fuganti C, Graselli P, Seneci PF et al. (1986) Immobilised benzylpenicillin acylase: application to the synthesis of optically active forms of carnitin and propanolol. Tetrahed Lett 27:2061-2062

    Article  CAS  Google Scholar 

  • Gabor EM, de Vries EJ, Janssen DB (2005) A novel penicillin acylase from the environmental gene pool with improved synthetic properties. Enzyme Microb Technol 36:182-190

    Article  CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology - a sustainable alternative for chemical industry. Biotechol Adv 23:471-499

    Article  CAS  Google Scholar 

  • Giordano RC, Ribeiro M, Giordano RL (2006) Kinetics of β-lactam antibiotics synthesis by penicillin acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization. Biotechnol Adv 24:27-41

    Article  CAS  Google Scholar 

  • Gonçalves LRB, Fern ández-Lafuente R, Guisan JM et al. (2000) A kinetic study of synthesis of amoxicillin using penicillin acylase immobilized on agarose. Appl Biochem Biotechnol 84-86:931-945

    Article  Google Scholar 

  • Gonçalves LR, Fern ández-Lafuente R, Guisan JM et al. (2002) The role of 6-aminopenicillanic acid on the kinetics of amoxicillin enzymatic synthesis catalyzed by penicillin G acylase immo-bilized onto glyoxyl agarose. Enzyme Microb Technol 31:464-471

    Article  Google Scholar 

  • Gorziglia G, Altamirano C, Conejeros R et al. (2002). Determination of kinetic parameters in the synthesis of ampicillin with immobilized penicillin acylase. Annals of the XV Chilean Congress of Chemical Engineering, Punta Arenas, October 2002, pp 107-112.

    Google Scholar 

  • Guisan JM, Alvaro G, Fern ández-Lafuente R (1990) Immobilization-stabilization of penicillin G acylase. An integrated approach. Ann NY Acad Sci 613:552-559

    Article  CAS  Google Scholar 

  • Svedas VK (2004) PH stability of penicillin acylase from Escherichia coli. Biochem 69(12):1700-1705

    Google Scholar 

  • Hernández-Jústiz O, Fernández-Lafuente R, Terreni M et al. (1998) Use of aqueous two-phase systems for in-situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports. Biotechnol Bioeng 59:73-79

    Article  Google Scholar 

  • Hernández-Jústiz O, Terreni M, Pagani G et al. (1999) Evaluation of different enzymes as catalysts for the production of β-lactam antibiotics following a kinetically controlled strategy. Enzyme Microb Technol 25:336-343

    Article  Google Scholar 

  • Hsu JS, Yang YB, Deng CH et al. (2004) Shuffling of expandase genes to enhance substrate speci-ficity for penicillin G. Appl Environ Microbiol 70(10):6257-6263

    Article  CAS  Google Scholar 

  • Hyun CK, Kim JH, Ryu DD (1993) Enhancement effect of water activity on enzymatic synthesis of cephalexin. Biotechnol Bioeng 42:800-806

    Article  CAS  Google Scholar 

  • Illanes A, Fajardo A (2001) Kinetically controlled synthesis of ampicillin with immobilized peni-cillin acylase in the presence of organic cosolvents. J Mol Catal B: Enzym 11:587-595.

    Article  CAS  Google Scholar 

  • Illanes A, Torres R, Cartagena O et al. (1993) Evaluation of penicillin acylase production by two strains of Bacillus megaterium. Biol Res 26:357-364

    CAS  Google Scholar 

  • Illanes A, Acevedo F, Gentina JC et al. (1994) Production of penicillin acylase from Bacillus megaterium in complex and defined media. Proc Biochem 29(4):263-270

    Article  CAS  Google Scholar 

  • Illanes A, Wilson L, Tomasello G (2000) Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme Microb Technol 27:270-278

    Article  CAS  Google Scholar 

  • Illanes A, Anjarí S, Arrieta R et al. (2002) Optimization of yield in the kinetically controlled synthesis of ampicillin with immobilized penicillin acylase in organic media. Appl Biochem Biotechnol 97:165-179.

    Article  CAS  Google Scholar 

  • Illanes A, Cabrera Z, Wilson L et al. (2003) Synthesis of cephalexin in ethylene glycol with glyoxyl-agarose immobilised penicillin acylase: temperature and pH optimisation. Proc Biochem 39:111-117

    Article  CAS  Google Scholar 

  • Illanes A, Anjarí S, Altamirano C et al. (2004) Optimization of cephalexin synthesis with immobi-lized penicillin acylase in ethylene glycol medium at low temperatures. J Mol Catal B: Enzym 30:95-103

    Article  CAS  Google Scholar 

  • Illanes A, Altamirano C, Fuentes M et al. (2005a) Synthesis of cephalexin in organic medium at high substrate concentrations and low enzyme to substrate ratio. J Mol Catal B: Enzym 35:45-51

    Article  CAS  Google Scholar 

  • Illanes A, Rodríguez F, Bahamondes C et al. (2005b) Determination of lumped kinetic parame-ters and their thermal dependence for the synthesis of cephalexin with immobilized penicillin acylase in organic medium. Biochem Eng J 24:209-215

    Article  CAS  Google Scholar 

  • Illanes A, Wilson L, Caballero E et al. (2006) Crosslinked penicillin acylase aggregates for syn-thesis of β-lactam antibiotics in organic medium. Appl Biochem Biotechnol 133:189-202.

    Article  CAS  Google Scholar 

  • Illanes A, Wilson L, Altamirano C et al. (2007a) Production of cephalexin in organic medium at high substrates concentrations with CLEA of penicillin acylase and PGA-450. Enzyme Microb Technol 40:195-203

    Article  CAS  Google Scholar 

  • Illanes A, Wilson L, Corrotea O et al. (2007b) Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium. J Mol Catal B: Enzym 47:72-78

    Article  CAS  Google Scholar 

  • Ishimura F, Seijo H (1991) Immobilization of penicillin acylase using porous polyacrilonitrile fibers. J Ferment Bioeng 71:140-143

    Article  CAS  Google Scholar 

  • Jager SAW, Jekel PA, Janssen DB (2007) Hybrid penicillin acylases with improved properties for synthesis of β-lactam antibiotics. Enzyme Microb Technol 40:1335-1344

    Article  CAS  Google Scholar 

  • Janssen MHA (2006) http://repository.tudelft.nl/file/200584/169747 ISBN:909020 7546

  • Jiang Y, Xia H, Guo C et al. (2007) Enzymatic hydrolysis of penicillin in mixed ionic liquids/water two-phase system. Biotechnol Prog 23:829-835

    CAS  Google Scholar 

  • Kallenberg A, van Rantwijk F, Sheldon R (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905-926

    Article  CAS  Google Scholar 

  • Kasche V (1985) Ampicillin and cephalexin synthesis catalyzed by E. coli penicillin amidase. Yield increase due to substrate recycling. Biotechnol Lett 7(12):877-882

    Article  CAS  Google Scholar 

  • Kasche V (1986) Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb Technol 8:4-16

    Article  CAS  Google Scholar 

  • Kemperman GJ, de Gelder FJ, Dommerholt PC et al. (1999) Clathrate-type complexation of cephalosporins with β-naphthol. Chem Eur J 5:2163-2168

    Article  CAS  Google Scholar 

  • Kheirolomoom A, Ardjmand M, Fazelina H et al. (2001) Clarification of penicillin acylase reaction mechanism. Proc Biochem 36:1095-1101

    Article  CAS  Google Scholar 

  • Kim MG, Lee SB (1996) Penicillin acylase-catalyzed synthesis of β-lactam antibiotics in water-methanol mixtures: effect of cosolvent content and chemical nature of substrate on reaction rates and yields. J Mol Catal B: Enzym 1:201-211

    Article  CAS  Google Scholar 

  • Kohsaka M, Demain AL (1976) Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70(2):465-473

    Article  CAS  Google Scholar 

  • Koreishi M, Tani K, Ise Y et al. (2007) Enzymatic synthesis of β-lactam antibiotics and N -fatty-acylated amino compounds by the acyl transfer reaction catalyzed by penicillin V acylase from Streptomyces mobaraensis. Biosci Biotechnol Biochem 71(6):1582-1586

    Article  CAS  Google Scholar 

  • Kupka JY, Shen, YQ, Wolfe S et al. (1983) Partial purification and properties of the alpha-ketoglutarate-linked ring expansion enzyme of beta-lactam biosynthesis of Cephalosporium acremonium. FEMS Microbiol Lett 16:1-6

    CAS  Google Scholar 

  • Kurochkina VB, Nys PS (2002) Kinetic and thermodynamic approach to design of processes for enzymatic synthesis of betalactams. Biocatal Biotransform 20(1):35-41

    Article  CAS  Google Scholar 

  • Lee SB, Ryu DDY (1982) Reaction kinetics and mechanism of penicillin amidase: a comparative study of computer simulation. Enzyme Microb Technol 4:35-38

    Article  CAS  Google Scholar 

  • Lin WJ, Kuo BY, Chou CP (2001) A biochemical engineering approach for enhancing production of recombinant penicillin acylase in Escherichia coli. Bioproc Biosys Eng 24:239-247

    Article  CAS  Google Scholar 

  • Lindsay JP, Clark DS, Dordick JS (2004) Combinatorial formulation of biocatalyst preparation for increased activity in organic solvents: salt activation of penicillin amidase. Biotechnol Bioeng 85 (5):553-560

    Article  CAS  Google Scholar 

  • Liu SL, Wei DZ, Song QX et al. (2006) Effect of organic cosolvent on kinetic resolution of tert-leucine by penicillin G acylase from Kluyvera citrophila. Bioproc Biosyst Eng 28:285-289

    Article  CAS  Google Scholar 

  • L ópez-Gallego F, Betancor L, Hidalgo A et al. (2004) Optimization of an industrial biocatalyst of glutaryl acylase: stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads. J Biotechnol 111:219-227

    Article  CAS  Google Scholar 

  • L ópez-Serrano P, Cao L, van Rantwijk F et al. (2002) Cross-linked enzyme aggregates with en-hanced activity: application to lipases. Biotechnol Lett 24:1379-1383

    Article  Google Scholar 

  • Lummer K, Rieks A, Galunsky B et al. (1999) PH dependence of penicillin amidase enantioselec-tivity for charged substrates. Biochim Biophys Acta 1433:327-334

    CAS  Google Scholar 

  • Maeda K, Fang A, Demain AL et al. (1995) The substrate specificity of deacetoxycephalosporin C synthase (“expandase”) of Streptomyces clavuligerus is extremely narrow. Enzyme Microb Technol 17(3):231-234

    Article  CAS  Google Scholar 

  • Marín M, Gudiol F (2003). Antibi óticos betalact ámicos. Enferm Infecc Microbiol Clin 21(1):42-55

    Article  Google Scholar 

  • Martín L, Prieto MA, Cort és E et al. (1995) Cloning and sequencing of the pac gene encoding the penicillin G acylase of Bacillus megaterium ATCC 14945. FEMS Microbiol Lett 125(2-3):287-292

    Article  Google Scholar 

  • Mateles RI (1998) Penicillin: a paradigm for biotechnology. Candida Corp, Illinois, 114 pp

    Google Scholar 

  • Mateo C, Palomo JM, van Langen L et al. (2004) A new mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273-276

    Article  CAS  Google Scholar 

  • Mateo C, Abian A, Bernedo M et al. (2005) Some special features of glyoxyl supports to immobi-lize proteins. Enzyme Microb Technol 37:456:462

    Google Scholar 

  • Matsumoto K (1993) Production of 6-APA, 7-ACA and 7-ADCA by immobilized penicillin and cephalosporin amidases. In: Tanaka A, Tosa T, Kobayashi T (eds). Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 67-88

    Google Scholar 

  • McDougall B, Dunnill P, Lilly MD (1982) Enzymic acylation of 6-aminopenicillanic acid. Enzyme Microb Technol 4:114-115

    Article  CAS  Google Scholar 

  • Meevootisom V, Saunders J (1987) Cloning and expression of penicillin acylase genes from over-producing strains of Escherichia coli and Bacillus megaterium. Appl Microbiol Biotechnol 25:372-378

    Article  CAS  Google Scholar 

  • Michels PC, Khmelnitsky YL, Dordick JS et al. (1998) Combinatorial biocatalysis: a natural ap-proach to drug discovery. TIBTECH 16(5):210-215

    CAS  Google Scholar 

  • Mislovi čova D, Mas árov á J, Bu čko M et al. (2006) Stability of penicillin acylase modified with various polysaccharides. Enzyme Microb Technol 39:579-585

    Article  CAS  Google Scholar 

  • Montes T, Graz ú V, Manso I et al. (2007) Improved stabilization of genetically modified peni-cillin G acylase in the presence of organic cosolvents by coimmobilization of the enzyme with polyethyleneimine. Adv Synth Catal 349:459-464

    Article  CAS  Google Scholar 

  • Nam DH, Kim C, Ryu DDY (1985) Reaction kinetics of cephalexin synthesizing enzyme from Xanthomonas citri. Biotechnol Bioeng 27:953-960

    Article  CAS  Google Scholar 

  • Newton GGF, Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175:548

    Article  CAS  Google Scholar 

  • Nierstrasz VA, Schro ën CGPH, Bosma R et al. (1999) Thermodynamically controlled synthesis of cefamandole. Biocatal Biotransform 17:209-223

    Article  CAS  Google Scholar 

  • Novella IS, Fargues C, Grevillot G (1994) Improvement of extraction of penicillin acylase by a combined use of chemical methods. Biotechnol Bioeng 44:379-382

    Article  CAS  Google Scholar 

  • Ospina S, L ópez-Munguía A, Gonz ález R et al. (1992) Characterization and use of a penicillin acylase biocatalyst. J. Chem Technol Biotechnol 53:205-214

    CAS  Google Scholar 

  • Ospina SS, Merino E, Ramírez OT et al. (1995) Recombinant whole cell penicillin acylase bio-catalyst: production, characterization and use in the synthesis and hydrolysis of antibiotics. Biotechnol Lett 17:615-620

    Article  CAS  Google Scholar 

  • Ospina S, Barzana E, Ramírez OT (1996) Effect of pH in the synthesis of ampicillin by penicillin acylase. Enzyme Microb Technol 19:462-469

    Article  CAS  Google Scholar 

  • Ozturk DC, Kazan D, Erarslan A (2002) Stabilization and functional properties of Escherichia coli penicillinG acylase by covalent conjugation of anionic polysaccharide carboxymethyl cellulose. World J Microbiol Biotechnol 18:881-888

    Article  Google Scholar 

  • Pan JL, Syu MJ (2004) A thermal study on the use of immobilized penicillin G acylase in the formation of 7-amino-3-deacetoxy cephalosporanic acid from cephalosporin G. J Chem Technol Biotechnol 79(10):1050-1056

    Article  CAS  Google Scholar 

  • Pan JL, Syu MJ (2005) Kinetic study on substrate and product inhibitions for the formation of 7-amino-3-deacetoxy cephalosporanic acid from cephalosporin G by immobilized penicillin acylase. Biochem Eng J 23:203-210

    Article  CAS  Google Scholar 

  • Parmar A, Kumar H, Marwaha SS et al. (1998) Recent trends in the enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid (7-ACA). Critic Rev Biotechnol 18(1):1-12

    Article  CAS  Google Scholar 

  • Parmar A, Kumar H, Marwaha S et al. (2000) Advances in enzymatic biotransformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18:289-301

    Article  CAS  Google Scholar 

  • Rajendhran J, Krishnakumar V, Gunasekaran P (2003) Production of penicillin G acylase from Bacillus sp: effect of medium components. World J Microbiol Biotechnol 19:107-110

    Article  CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2004) Recent biotechnological interventions for developingim-proved penicillin G acylases. J Biosci Bioeng 97(1):1-13

    CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2007a) Application of cross-linked enzyme aggregates of Bacillus badius penicillin acylase for the production of 6-aminopenicillanic acid. Lett Appl Microbiol 44:43-49

    Article  CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2007b) Molecular cloning and characterization of thermostable β-lactam acylase with broad substrate specificity from Bacillus badius. J Biosci Bioeng 103 (5):457-463

    Article  CAS  Google Scholar 

  • Ramírez OT, Zamora R, Espinoza G et al. (2004) Kinetic study of penicillin acylase production by recombinant E. coli in batch cultures. Proc Biochem 29:197-206

    Article  Google Scholar 

  • Rocchietti S, San Vicente-Urrutia A, Pregnolato M et al. (2002) Influence of the enzyme derivative preparation and substrate structure on the enantioselectivity of penicillin G acylase. Enzyme Microb Technol 31:88-93

    Article  CAS  Google Scholar 

  • Roche D, Prasad K, Repic O (1999) Enantioselective acylation of β-aminoesters using penicillin G acylase in organic solvents. Tetrahed Lett 40:3665-3668

    Article  CAS  Google Scholar 

  • Rolinson GN, Batchelor FR, Butterworth D et al. (1960) Formation of 6-aminopenicillanic acid from penicillin by enzymatic hydrolysis. Nat Lond 187:236-237

    Article  CAS  Google Scholar 

  • Rolinson GN, Geddes AM (2007) The 50th anniversary of the discovery of 6-aminopenicillanic acid (6-APA). Internatl J Antimicrob Agents 29:3-8

    Article  CAS  Google Scholar 

  • Rosell CM, Fern ández-Lafuente R, Guis án JM (1993) Resolution of racemic mixtures by synthesis reactions catalyzed by immobilized derivatives of the enzyme penicillin G acylase. J Mol Catal 84:365-371

    Article  CAS  Google Scholar 

  • Rosell CM, Terreni M, Fern ández-Lafuente R et al. (1998) A criterion for the selection of monophasic solvents for enzymatic synthesis. Enzyme Microb Technol 23:64-69

    Article  CAS  Google Scholar 

  • Roy JJ, Abraham TE (2004) Strategies in making cross-linked enzyme crystals. Chem Rev 104 (9):3705-3721

    Article  CAS  Google Scholar 

  • Schro ën CGP, Nierstrasz VA, Kroon PJ et al. (1999) Thermodynamically controlled synthesis of β-lactam antibiotics. Equilibrium concentrations and side-chain properties. Enzyme Microb Tech-nol 24:489-506

    Article  Google Scholar 

  • Schro ën CGPH, Nierstrasz VA, Moody HM et al. (2001a) Modelling of the enzymatic kinetic syn-thesis of cephalexin-influence of substrate concentration and temperature. Biotechnol Bioeng 73:171-178

    Article  Google Scholar 

  • Schro ën CGPH, Mohy Eldin MS, Janssen AE et al. (2001b) Cephalexin synthesis by immobi-lized penicillin acylase under non-isothermal conditions: reduction of diffusion limitation. J Mol Catal B: Enzym 15:163-172

    Article  Google Scholar 

  • Schro ën CGPH, Nierstrasz VA, Bosma R et al. (2002a) Integrated reactor concept for the enzymatic kinetic synthesis of cephalexin. Biotechnol Bioeng 80:144-154

    Article  CAS  Google Scholar 

  • Schro ën CGPH, Fretz CB, De Bruin VH et al. (2002b) Modelling of the enzymatic kinetically con-trolled synthesis of cephalexin. Influence of diffusional limitation. Biotechnol Bioeng 80:331-340

    Article  CAS  Google Scholar 

  • Senerovic L, Stankovic N, Spizzo P et al. (2005) High level production and covalent immobiliza-tion of Providencia rettgeri penicillin G acylase (PAC) from recombinant Pichia pastoris for the development of a novel and stable biocatalyst of industrial applicability. Biotechnol Bioeng 93 (2):344-354

    Article  CAS  Google Scholar 

  • Sheldon RA, van Rantwijk F, van Langen LM et al. (2001) Biocatalysts and biocatalysis in the syn-thesis of β-lactam antibiotics. In: Bruggink A (ed). Synthesis of β-lactam antibiotics. Kluwer Acad Publ, Dordrecht, pp 103-148

    Google Scholar 

  • Shewale J, Sivaraman H (1989) Penicillin acylase: enzyme production and its application in the manufacture of 6-APA. Proc Biochem 24(4):146-154

    CAS  Google Scholar 

  • Shewale J, Deshpande S, Sudhakaran V et al. (1990) Penicillin acylase: applications and potentials. Proc Biochem 26:97-103

    Google Scholar 

  • Shewale JG, Sudhakaran V (1997) Penicillin V acylase: its potential in the production of 6-aminopenicillanic acid. Enz Microb Technol 20:402-410

    Article  CAS  Google Scholar 

  • Stapley EO, Jackson M, Hernandez S et al. (1972) Cephamycins, a new family of β-lactam antibi-otics I. Production by Actinomycetes, including Streptomyces lactamdurans sp. n1. Antimicrob Agents Chemother 2(3):122-131

    CAS  Google Scholar 

  • Sudhakaran V, Desphande B, Ambedkar S et al. (1992) Molecular aspects of penicillin and cephalosporin acylases. Proc Biochem 27:131-143

    Article  CAS  Google Scholar 

  • Svedas VK, Savchenko MV, Beltser AI et al. (1996) Enantioselective penicillin acylase-catalyzed reactions. Ann NY Acad Sci 799:659-669

    Article  CAS  Google Scholar 

  • Terreni M, Pagani G, Ubiali D et al. (2001) Modulation of penicillin acylase properties via immo-bilization techniques: one-pot chemoenzymatic synthesis of cephamandole from cephalosporin C. Bioorg Med Chem Lett 11:2429-2432

    Article  CAS  Google Scholar 

  • Terreni M, Ubiali D, Pagani G et al. (2005) Penicillin G acylase catalyzed acylation of 7-ACA in aqueous two-phase systems using kinetically and thermodynamically controlled strate-gies: improved enzymatic synthesis of 7-[(1-hydroxy-1-phenyl)-sacetamido]-3acetoxymethyl-Δ3 -cephem-4-carboxylic acid. Enzyme Microb Technol 36:672-679

    Article  CAS  Google Scholar 

  • Travascio P, Zito E, de Maio A et al. (2002) Advantages of using non-isothermal bioreactors for the enzymatic synthesis of antibiotics: the penicillin G acylase as enzyme model. Biotechnol Bioeng 79:334-346

    Article  CAS  Google Scholar 

  • Ulijn RV, Janssen AEM, Moore BD et al. (2001) Predicting when precipitation-driven synthesis is feasible: applications to biocatalysis. Chem Eur J 7:2089-2098.

    Article  CAS  Google Scholar 

  • Ulijn RV, De Martin L, Halling PJ et al. (2002a) Enzymatic synthesis of β-lactam antibiotics via direct condensation. J Biotechnol 99(3):215-222

    Article  CAS  Google Scholar 

  • Ulijn RV, De Martin L, Gardossi L et al. (2002b) Solvent selection for solid-to-solid synthesis. Biotechnol Bioeng 80(5):509-515

    Article  CAS  Google Scholar 

  • Valle F, Balb ás P, Merino E et al. (1991) The role of penicillin amidases in nature and industry. Trends Biochem Sci 16:36-40

    Article  CAS  Google Scholar 

  • Vandamme E (1981) Use of microbial enzymes and cell preparations to synthesise oligopeptide antibiotics. J Chem Technol Biotechnol 31:637-659

    Article  CAS  Google Scholar 

  • van de Sandt EJ, de Vroom E (2000) Innovations in cephalosporin and penicillin production: paint-ing the antibiotics industry green. Chimica Oggi 18:72-75

    Google Scholar 

  • van der Klein PAM, Castelijns J, Hirs HGJ et al. (1996) Ring expansion of norpenicillin to 3-norcephalosporin. Rec Trav Chim Pays-Bas 115:185-190

    Google Scholar 

  • van der Weilken LA, Ottens M, Straathof JJ (2001) Process technology and process integration in the preparation of penicillins. In: Bruggink A (ed). Synthesis of β-lactam antibiotics. Kluwer Acad Publ, Dordrecht, pp 153-205

    Google Scholar 

  • van Langen LM, Oosthoek NHP, Guranda DT et al. (2000) Penicillin acylase-catalyzed resolution of amines in aqueous organic solvents. Tetrahed Asymm 11:4593-4600

    Article  Google Scholar 

  • Verweij J, de Vroom E (1993) Industrial transformations of penicillins and cephalosporins. Recl Trav Chim Pays-Bas 112:66-81

    CAS  Google Scholar 

  • Wang T, Zhu H, Ma X et al. (2006) Structure-based stabilization of an enzyme: the case of peni-cillin acylase from Alcaligenes faecalis. Prot Pept Lett 13:177-183

    Article  CAS  Google Scholar 

  • Wang Z, Wang L, Xu JH et al. (2007a) Enzymatic hydrolysis of penicillin G to 6-aminopenicillanic acid in cloud point system with discrete countercurrent experiment. Enzyme Microb Technol 41:121-126

    Article  CAS  Google Scholar 

  • Wang J, Zhang Q, Huang H et al. (2007b) Increasing synthetic performance of penicillin G acylase from Bacillus megaterium by site-directed mutagenesis. Appl Microbiol Biotechnol 74:1023-1030

    Google Scholar 

  • Wegman M, Janssen M, van Rantwijk F et al. (2001) Towards biocatalytic synthesis of β-lactam antibiotics. Adv Synth Catal 343:559-576

    Article  CAS  Google Scholar 

  • Wegman MA, van Langen LM, van Rantwijk F et al. (2002) A two-step one-pot enzymatic syn-thesis of cephalexin from D-phenylglycine nitrile. Biotechnol Bioeng 79:356-361

    Article  CAS  Google Scholar 

  • Wei DZ, Zhu JH, Cao JX (2002) Enzymatic synthesis of cephalexin in aqueous two-phase systems. Biochem Eng J 11:95-99

    Article  CAS  Google Scholar 

  • Wei DZ, Yang L (2003) Effect of ethylene glycol on the synthesis of ampicillin using immobilized penicillin acylase. J Chem Technol Biotechnol 78:431-436

    Article  CAS  Google Scholar 

  • Wei D, Yang L, Song Q (2003) Effect of temperature on the enzymatic synthesis of cefaclor with in situ product removal. J Mol Catal B Enzym 26:99-104

    Article  CAS  Google Scholar 

  • Wilson L, Illanes A, Abian O et al. (2002) Encapsulation of very soft cross-linked enzyme aggre-gates CLEAs in very rigid LentiKats. FAL Agric Res 241:121-125

    CAS  Google Scholar 

  • Wilson L, Illanes A, Abian O et al. (2004a) Co-aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media. Bio-macromolecules 5:852-857

    CAS  Google Scholar 

  • Wilson L, Illanes A, Pessela CB et al. (2004b) Encapsulation of crosslinked penicillin G acylase aggregates in Lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86 (5):558-562

    Article  CAS  Google Scholar 

  • Yang L, Wei Z (2003) Enhanced enzymatic synthesis of a semi-synthetic cephalosporin, cefaclor, with in situ product removal. Biotechnol Lett 25:1195-1198

    Article  CAS  Google Scholar 

  • Yang S, Zhou L, Tang H et al. (2002) Rational design of a more stable penicillin G acylase against organic cosolvent. J Mol Catal B Enzym 18:285-290

    Article  CAS  Google Scholar 

  • Yang Y, Biedendieck R, Wang W et al. (2006) High yield recombinant penicillin G amidase pro-duction and export into the growth medium using Bacillus megaterium. Microb Cell Fact 5:36

    Article  CAS  Google Scholar 

  • Svedas VK (2000) Kinetics of ampicillin synthesis catalyzed by penicillin acylase from E. coli in homogeneous and heterogeneous systems. Biochemistry (Moscow) 65:1367-1375

    Article  Google Scholar 

  • Svedas VK (2002) Penicillin acylase-catalyzed solid-state ampicillin synthesis. Adv Synth Catal 344(8):894-898

    Article  Google Scholar 

  • Youshko MI, van Langen LM, de Vroom E et al. (2000) Penicillin acylase-catalyzed synthesis of ampicillin in “aqueous solution-precipitate” system. High substrate concentration and supersat-uration effect. J Mol Catal B Enzym 10:509-515

    Article  CAS  Google Scholar 

  • Youshko MI, van Langen LM, de Vroom E et al. (2001) Highly efficient synthesis of ampicillin in an “aqueous solution precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotechnol Bioeng 73: 426-430

    Article  CAS  Google Scholar 

  • Youshko MI, Chilov GG, Shcherbakova TA et al. (2002) Quantitative characterization of the nu-cleophile reactivity in penicillin acylase-catalyzed acyl transfer reaction. Biochim Biophys Acta 1599:134-140

    CAS  Google Scholar 

  • Youshko MI, Bukhanov AL, Svedas VK (2003) Study of the nucleophile binding in the penicillin acylase active center. Kinetic analysis. Biochemistry (Moscow) 68(3):334-338

    Article  CAS  Google Scholar 

  • Youshko MI, Moody H, Bukhanov A et al. (2004) Penicillin acylase-catalyzed synthesis of β-lactam antibiotics in highly condensed aqueous systems: beneficial impact of kinetic substrate supersaturation. Biotechnol Bioeng 85:323-329

    Article  CAS  Google Scholar 

  • Zhang WG, Wei DZ, Yang XP et al. (2006) Penicillin acylase catalysis in the presence of ionic liquids. Bioproc Biosyst Eng 29:379-383

    Article  CAS  Google Scholar 

  • Zhang Y, Wei D, Li D et al. (2007) Optimisation of enzymatic synthesis of cefaclor with in situ product removal and continuous acyl donor feeding. Biocatal Biotransform 25(1):59-64

    Article  CAS  Google Scholar 

  • Aires-Barros MR, Cabral JMS (1991) Selective separation and purification of two lipases from Chromobacterium viscosum using AOT reversed micelles. Biotechnol Bioeng 38:1302-1307

    Article  CAS  Google Scholar 

  • Aires-Barros MR, Taipa MA, Cabral JMS (1994) Isolation and purification of lipases. In: Wooley P, Petersen SB (eds). Lipases - their structure, biochemistry and application. Cambridge University Press, Cambridge, pp 243-270

    Google Scholar 

  • Alc ántara AR, Domínguez de María P, Fern ández M et al. (2004) Resolution of racemic acids, esters and amines by Candida rugosa lipase in slightly hydrated organic media. Food Technol Biotechnol 42(4):343-354

    Google Scholar 

  • Allen LH (2000) Pitch control in pulp mills. In: Back EL and Allen LH (eds). Pitch control, wood resin and deresination. TAPPI Press, Norcross, pp 265-288

    Google Scholar 

  • Alvarez L (2005) Immobilization of Alcaligenes sp. lipase QL for its use in the selective trans-esterification of stanols from a mixture of wood stanols and sterols. MSc Thesis, School of Biochemical Engineering, Universidad Cat ólica de Valparaíso, Valparaíso, 190 pp

    Google Scholar 

  • Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Bioref 1 (1):57-66

    Article  CAS  Google Scholar 

  • Anderson RE, Hedlund GB, Jensson V (1999) Thermal inactivation of a heat resistant lipase pro-duced by the psychrotrophic bacterium Pseudomonas fluorescens. J Dairy Sci 62:361-367

    Article  Google Scholar 

  • Ando M, Sanaka T, Nihei H (1999) Eicosapentanoic acid reduces plasma levels of remnant lipopro-teins and prevents in vivo peroxidation of LDL in dialysis patients. J Am Soc Nephrol 10:2177-2184

    CAS  Google Scholar 

  • Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51:491-525

    Article  CAS  Google Scholar 

  • Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253-257

    Article  CAS  Google Scholar 

  • Arroyo M, Sanchez-Montero JM, Sinisterra JV (1999) Thermal satabilization of immobilized li-pase B from C. antarctica on different supports: effect of water activity on enzymatic activity in organic media. Enzyme Microb Technol 24:3-12

    Article  CAS  Google Scholar 

  • Balcao VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb Technol 18:392-398

    Article  CAS  Google Scholar 

  • Bandmann N, Collet E, Leijen J et al. (2000) Genetic engineering of the Fusarium solani pisi lipase cutinase for enhanced partitioning in PEG-phosphate aqueous two-phase system. J Biotechnol 79:161-172

    Article  CAS  Google Scholar 

  • Bastida A, Sabuquillo P, Armisen P et al. (1998) A single step purification, immobilization and hy-peractivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58:486-492

    Article  CAS  Google Scholar 

  • Beaton JM (1978) Preparation of sterol substrates for bioconversion. US Patent 4124607. Issued on November 7, 1978

    Google Scholar 

  • Berglund P (2001) Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 18: 13-22

    Article  CAS  Google Scholar 

  • Bloomer S, Adlercreutz P, Mattiasson B (1990) Triglyceride interesterification by lipases. Cocoa butter equivalents from a fraction of palm oil. JAOCS 67(8):519-524

    Article  CAS  Google Scholar 

  • Bornscheuer UT (2002) Methods to increase enantioselectivity of lipases and esterases. Curr Opin Biotechnol 13(6):543-547

    Article  CAS  Google Scholar 

  • Bradoo S, Saxena RK, Gupta R (1999) Two acidothermolerant lipases from new variants of Bacil-lus sp. World J Microbiol Biotechnol 15:87-91

    Article  Google Scholar 

  • Brady L, Brzozowski AM, Derewenda ZS et al. (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767-770

    Article  CAS  Google Scholar 

  • Brzozowski AM, Derewenda U, Derewenda ZS et al. (1991) A model for interfacial activation in lipases from the structure of fungal lipase-inhibitor complex. Nature 351:491-494

    Article  CAS  Google Scholar 

  • Cameron PA, Davison BH, Frymier PD et al. (2002) Direct transesterification of gases by “dry” immobilized lipase. Biotechnol Bioeng 78(3):251-256

    Article  CAS  Google Scholar 

  • Cardenas J, Alvarez E, de Castro-Alvarez MS et al. (2001) Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J Mol Catal B: Enzym 14:111-123

    Article  CAS  Google Scholar 

  • Cernia E, Palocci C, Soro (2000) Solvent engineering modulates stereoselectivity of microbial lipase. In: Alberghina L (ed). Protein engineering in industrial biotechnology. Harwood Acad-emic Publishers, Newark, pp 135-146

    Google Scholar 

  • Cos O, Resina D, Ferrer P et al. (2005) Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Eng J 26:86-94

    Article  CAS  Google Scholar 

  • Cowan D (1996) Industrial enzyme technology. TIBTECH 14:177-178

    CAS  Google Scholar 

  • Cui Y, Wei D, Yu J (1997) Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen. Biotechnol Lett 19:865-868

    Article  CAS  Google Scholar 

  • De Crescenzo G, Ducret A, Trani M et al. (2000) Enantioselective esterification of racemic keto-profen in non-aqueous solvent under reduced pressure. J Mol Catal B: Enzym 9(1-3):49-56

    Article  Google Scholar 

  • de Lathouder KM, Marques Fl ó T, Kapteijn F et al. (2005) A novel structured bioreactor: develop-ment of a monolithic stirrer reactor with immobilized lipase. Catal Today 105:443-447

    Article  CAS  Google Scholar 

  • de Oliveira D, Di Luccio M, Faccio C et al. (2004) Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl Biochem Biotechnol 115(1-3):771-780

    Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144-151

    Article  CAS  Google Scholar 

  • Derewenda U, Brzozowski AM, Lawson DM et al. (1992) Catalysis at the interface: the anatomy of a conformational change in a trglyceride lipase. Biochemistry 31:1532-1541

    Article  CAS  Google Scholar 

  • Dong H, Gao S, Han S et al. (1999) Purification and characterization of a Pseudomonas sp. lipase and its properties in non aqueous media. Appl Microbiol Biotechnol 30:251-256

    CAS  Google Scholar 

  • Donova MV, Dovbnya DV, Sukhodolskaya GV et al. (2004) Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol 80(1):55-60

    Article  CAS  Google Scholar 

  • Dosanjh NS, Kaur J (2002) Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnol Appl Biochem 36:7-12

    Article  CAS  Google Scholar 

  • Du W, Xu Y, Liu D et al. (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B: Enzym 30(3-4):125-129

    Article  CAS  Google Scholar 

  • Ducret A, Trani M, Lortie R (1998) Lipase catalysed enantioslective esterification of ibuprofen in organic solvent under controlled water activity. Enzyme Microb Technol 22:212-216

    Article  CAS  Google Scholar 

  • Elibol M, Ozer D (2001) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Proc Biochem 36:325-329

    Article  Google Scholar 

  • Faber K (1997) Biotransformations in organic chemistry. Springer, Berlin, Heidelberg, New York, 402 pp

    Google Scholar 

  • Ferrer P, Montesinos JL, Valero F et al. (2001) Production of native and recombinant lipases by Candida rugosa: a review. Appl Biochem Biotechnol 95:221-255

    Article  CAS  Google Scholar 

  • Fregapane G, Sarney DB, Vulfson EN (1991) Enzymic solvent-free synthesis of sugar acetal fatty acid esters. Enzyme Microb Technol 13(10):796-800

    Article  CAS  Google Scholar 

  • Fuenzalida M, Markovits A, Martínez I (2006) Process for producing sterol or stanol esters by enzymatic transesterification in solvent and water free media. EP 1285969 B1. Issued on No-vember 10, 2006

    Google Scholar 

  • Fujii R, Nakagawa Y, Hiratake J et al. (2005) Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng Des Sel 18(2):93-101

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:406-416

    Google Scholar 

  • Ghanem A, Aboul-Enein HY (2004) Lipase-mediated chiral resolution of racemates in organic solvents. Tetrahed Assym 15(21):331-3351

    Google Scholar 

  • Ghanem A, Aboul-Enein HY (2005) Application of lipases in kinetic resolution of racemates. Chirality 17:1-15

    Article  CAS  Google Scholar 

  • Ghanem EH, Al-Sayeed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microbiol Biotechnol 16:459-464

    Article  CAS  Google Scholar 

  • Gotor V (2002) Lipases and (R)-oxynitrilases: useful tools in organic synthesis. J Biotechnol 96:35-42

    Article  CAS  Google Scholar 

  • Gulati R, Isar J, Kumar V et al. (2005) Production of a novel alkaline lipase by Fusarium globulo-sum using neem oil, and its applications. Pure Appl Chem 77(1):251-262

    Article  CAS  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763-781

    Article  CAS  Google Scholar 

  • Guti érrez A, del Río JC, Martínez J et al. (2001) The biotechnological control of pitch in paper pulp manufacturing. TIBTECH 19(9):340-348

    Google Scholar 

  • Ha SH, Lan MN, Lee SH et al. (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb Technol 41:480-483

    Article  CAS  Google Scholar 

  • Hari Krishna S, Karanth NG (2002) Lipases and lipase-catalyzed esterification reactions in non-aqueous media. Catal Rev 44(4):499-591

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of lipases. Enzyme Microb Technol 39:235-251

    Article  CAS  Google Scholar 

  • Hatti-Kaul R, T örnvall U, Gustafsson L et al. (2007) Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. TIBTECH 25(3):119-124

    CAS  Google Scholar 

  • Henne A, Schmitez RA, Gottschalk G et al. (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on E. coli. Appl Environ Microbiol 66:3113-3116

    Article  CAS  Google Scholar 

  • Hilal N, Nigmatullin R, Alpatova A (2004) Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J Membrane Sci 238(1-2):131-141

    Article  CAS  Google Scholar 

  • Hiol A, Jonzo MD, Rugani N et al. (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb Technol 26:421-430

    Article  CAS  Google Scholar 

  • Hong MC, Chang MC (1998) Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol Lett 20:1027-1029

    Article  CAS  Google Scholar 

  • Hong Y, Wang TW, Hudak KA et al. (2000) An ethylene-induced cDNA encoding a lipase ex-pressed at the onset of senescence. Plant Biol 97:8717-8722

    CAS  Google Scholar 

  • Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118(1-3):155-170

    Article  CAS  Google Scholar 

  • Houssam ER, Perrard A, Pierre AC (2004) Application of lipase encapsulated in silica aerogels to a transesterification reaction in hydrophobic and hydrophilic solvents: bi-bi ping-pong kinetics. J Mol Catal B: Enzym 30(3-4):137-150

    Article  CAS  Google Scholar 

  • Hsu AF, Jones KC, Foglia TA et al. (2004) Transesterification activity of lipases immobilized in a phyllosilicate sol-gel matrix. Biotechnol Lett 26:917-921

    Article  CAS  Google Scholar 

  • Hung TC, Giridhar R, Chiou SH et al. (2003) Binary immobilization of Candida rugosa lipase on chitosan. J Mol Catal B: Enzym 26:69-78

    Article  CAS  Google Scholar 

  • Iso M, Chen B, Eguchi M et al. (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B: Enzym 16:53-58

    Article  CAS  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. TIBTECH 16:396-403

    CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315-351

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T, Eipper A et al. (2001) Directed evolution and the creation of enantioselective biocatalyst. Appl Microbiol Biotechnol 55:519-530

    Article  CAS  Google Scholar 

  • Jandacek RJ, Whiteside JA, Holcombe BN et al. (1987) The rapid hydrolysis and efficient absorp-tion of triglycerides with octanoic acid in the 1 and 3 positions and long-chain fatty acid in the 2 position. Am J Clin Nutr 45:940-945

    CAS  Google Scholar 

  • Jensen RG (1983) Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids 18:650-657

    Article  CAS  Google Scholar 

  • Jensen RG, Hamosh M (1996) Selectivity of lipases, types and determination. In: Malcata FK (ed). Engineering of/with lipases. Kluwer Academic Publishers, Dordrecht, pp 17-29

    Google Scholar 

  • Johansson A (1982) By-product recovery and valorization in the kraft industry - a review of current trends in the recovery and use of turpentine and tall-oil derivatives. Biomass 2(2):103-113

    Article  CAS  Google Scholar 

  • Kamal A, Chouhan G (2004) Chemoenzymatic synthesis of enantiomerically pure 1,2-diols em-ploying immobilized lipase in the ionic liquid [bmim]PF6 . Tetrahed Lett 45:8801-8805

    Article  CAS  Google Scholar 

  • Kazlauskas RJ, Bornscheuer UT (1998) Biotransformations with lipases. In: Rehm HJ, Pihler G, Stadler A et al. (eds). Biotechnology, vol. 8. Wiley-VCH, New York, pp 37-192

    Google Scholar 

  • Kirchner G, Scollar P, Klibanov AM (1985) Resolution of racemic mixtures via lipase catalysis in organic solvents. J Am Chem Soc 107:1012-1016

    Article  Google Scholar 

  • Klibanov AM (1997) Why are enzymes less active in organic solvents than in water? TIBTECH 15:97-101

    CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241-246

    Article  CAS  Google Scholar 

  • Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232-240

    Article  CAS  Google Scholar 

  • Knothe G, van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign, 304 pp

    Book  Google Scholar 

  • Koskinen AMP, Klibanov AM (1996) Enzymatic reactions in organic media. Blackie Academic Professional, London, 314 pp

    Google Scholar 

  • Kovac A, Scheib H, Pleiss J et al. (2000) Molecular bases of lipase stereoselectivity. Eur J Lipid Sci Technol 102(1):61-77

    Article  CAS  Google Scholar 

  • Krishnakant S, Madamwar D (2001) Ester synthesis by lipase immobilized on silica and mi-croemulsion based organo-gels (MBGs). Proc Biochem 36:607-611

    Article  Google Scholar 

  • Kumari V, Shah S, Gupta MN (2007) Preparation of biodiesel by lipase-catalyzed transesterifica-tion of high free fatty acid containing oil from Madhuca indica. Energy Fuels 21(1):368-372

    Article  CAS  Google Scholar 

  • Laane C, Boeren S, Vos K et al. (1987) Rules for optimizaion of biocatalysis in organic solvents. Biotechnol Bioeng 30:81-87

    Article  CAS  Google Scholar 

  • Lalonde JJ, Govardhan C, Khalaf N et al. (1995) Crystals of Candida rugosa lipase: highly efficient catalyst for the resolution of chiral esters. J Am Chem Soc 117:6845-6849

    Article  CAS  Google Scholar 

  • Lau RM, Rantwijk FV, Seddon KR et al. (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189-4192

    Article  CAS  Google Scholar 

  • Laudani CG, Habulin M, Knez Zˇ et al. (2007) Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench scale packed-bed reactor study. J Supercrit Fluids 41:74-81

    Article  CAS  Google Scholar 

  • Lee OW, Koh YS, Kim KJ et al. (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393-400

    Article  CAS  Google Scholar 

  • Lee SY, Hubbe MA, Saka S (2006) Prospects for biodiesel as a byproduct of wood pulping - a review. BioResources 1(1):150-171

    Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothe-coides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764-771

    Article  CAS  Google Scholar 

  • Li ZY, Ward OP (1993) Enzyme catalysed production of vegetable oils containing omega-3 polyun-staurated fatty acid. Biotechnol Lett 15:185-188

    Article  CAS  Google Scholar 

  • Lichtenstein AH, Deckelbaum RJ (2001) Stanol/sterol ester-containing foods and blood cholesterol levels. Circulation 103:1177

    CAS  Google Scholar 

  • Lieberman R, Ollis D (1975) Hydrolysis of particulate tributyrin in a fluidized lipase reactor. Biotechnol Bioeng 17:1401-1419

    Article  CAS  Google Scholar 

  • Linko YY, L äms ä M, Wu X et al. (1998) Biodegradable products by lipase biocatalysis. J Biotech-nol 66(1):41-50

    CAS  Google Scholar 

  • Litthauer D, Ginster A, Skein EVE (2002) Pseudomonas luteola lipase: a new member of the 320-residue Pseudomonas lipase family. Enzyme Microb Technol 30:209-215

    Article  CAS  Google Scholar 

  • L ópez-Serrano P, Cao L, van Rantwijk F et al. (2002) Cross-linked enzyme aggregates with en-hanced activity: application to lipases. Biotechnol Lett 24:1379-1383

    Article  Google Scholar 

  • Lorenz P, Liebeton K, Niehaus (2002) Screening for novel enzymes for biocatalytic processes: ac-cessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572-577

    Article  CAS  Google Scholar 

  • Lowrier A, Drtina GJ, Klibanov AM (1996) On the issue of interfacial activation of lipase in nonaqueous media. Biotechnol Bioeng 50(1):1-5

    Article  Google Scholar 

  • Luo Y, Zheng Y, Jiang Z et al. (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 73(2):349-355

    Article  CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Biores Technol 70:1-15

    Article  CAS  Google Scholar 

  • Magnusson A, Hult K, Holmquists M (2001) Creation of an enantioselective hydrolase by engi-neered substrate-assisted catalysis. J Am Chem Soc 123:4354-4355

    Article  CAS  Google Scholar 

  • Manjon A, Iborra JL, Arocas A (1991) Short-chain flavour ester synthesis by immobilized lipase in organic media. Biotechnol Lett 13:339-345

    Article  CAS  Google Scholar 

  • Margolin A (1996) Novel crystalline catalysts. TIBTECH 14:223-230

    CAS  Google Scholar 

  • Markovits A, Chamy R, Illanes A et al. (2004) Upgrading of residues from Kraft cellulose process by the production of aromas, pharmaceuticals and nutraceuticals by enzyme biocatalysis. Final Report, Project FONDEF D00I 1096, CONICYT, Chile.

    Google Scholar 

  • Martinelle M, Holmquist M, Hult K (1995) On the interfacial activation of Candida antarctica li-pase A and B as compared with Humicola lanuginose lipase. Biochim Biophys Acta 1258:272-276

    Google Scholar 

  • Martínez I, Markovits A, Chamy R et al. (2004) Lipase-catalyzed solvent-free transesterification of wood sterols. Appl Biochem Biotechnol 112:55-62

    Article  Google Scholar 

  • Matsumoto T, Takahashi S, Kaieda M et al. (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57(4):515-520

    Article  CAS  Google Scholar 

  • Maurer K (2004) Detergent proteases. Curr Opin Biotechnol 15:330-334

    Article  CAS  Google Scholar 

  • Misset O, Gerritse G, Jaeger KE et al. (1994) The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis. Protein Eng 7(4):523-529

    Article  CAS  Google Scholar 

  • Muralidhar RV, Chirumamilla RR, Marchant R et al. (2002) Understanding lipase stereoselectivity. World J Microbiol Biotechnol 18:81-97

    Article  CAS  Google Scholar 

  • Nakagawa Y, Hasegawa A, Hiratake J et al. (2007) Engineering of Pseudomonas aeruginosa li-pase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases. Protein Eng Des Sel 20(7):339-346

    Article  CAS  Google Scholar 

  • Nardini M, Lang DA, Liebeton K et al. (2000) Crystal structure of Pseudomonas aeruginosa li-pase in the open conformation. The prototype for family L1 of bacterial lipases. J Biol Chem 275:31219-31225

    Article  CAS  Google Scholar 

  • Nguyen TT (1999) The cholesterol-lowering action of plant stanol esters. J Nutrit 129:2109-2112

    CAS  Google Scholar 

  • Oh BC, Kim HK, Lee JK et al. (1999) Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol Lett 179:385-392

    Article  CAS  Google Scholar 

  • Ollis DL, Shea E, Cygler M et al. (1992) The α/β hydrolase fold. Protein Eng 5:197-211

    Article  CAS  Google Scholar 

  • Omar IC, Hayashi M, Nagai S (1987) Purification and some properties of a thermostable lipase from Humicda lanuqinosa No 3. Agric Biol Chem 51(1):37-45

    CAS  Google Scholar 

  • Ong AL, Kamaruddin AH, Bhatia S (2005) Current technologies for the production of (S)-ketoprofen: process perspective. Proc Biochem 40(11):3526-3535

    Article  CAS  Google Scholar 

  • Os ório NM, Gusm ão JH, da Fonseca MM et al. (2005) Lipase-catalysed interesterification of palm stearin with soybean oil in a continuous fluidised-bed reactor. Eur J Lipid Sci Technol 107(7-8):455-463

    Article  CAS  Google Scholar 

  • Ottonson J, Rotticci-Mulder JC, Rotticci D et al. (2001) Rational design of enantioselective en-zymes requires consideration of entropy. Protein Sci 10:1769-1774

    Article  Google Scholar 

  • Palekar AA, Vasudevan PT, Yan S (2000) Purification of lipase: a review. Biocatal Biotransform 18:177-200

    Article  CAS  Google Scholar 

  • Palomo JM, Fernandez-Lorente G, Mateo C et al. (2002) Modulation of the enantioselectivity of li-pases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme Microb Technol 31:775-783

    Article  CAS  Google Scholar 

  • Palomo JM, Mu ñoz G, Fern ández-Lorente G et al. (2003) Modification of Mucor miehei lipase properties via directed immobilization on different heterofunctional epoxy resins. Hydrolytic resolution of (R,S)-2-butyroyl-2-phenylacetic acid. J Mol Catal B: Enzym 21:201-210

    Article  CAS  Google Scholar 

  • Palomo JM, Ortiz C, Fern ández-Lorente G et al. (2005) Lipase-lipase interaction as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Technol 36:447-454

    Article  CAS  Google Scholar 

  • Park EY, Sato M, Kojima S (2006) Fatty acid methyl ester production using lipase-immobilizing silica particles with different particle sizes and different specific surface areas. Enzyme Microb Technol 39(4):889-896

    Article  CAS  Google Scholar 

  • Patklar SA, Bjorkling F (1994) Lipase inhibitors. In: Woolley P, Petersen SB (eds). Lipasetheir structure, biochemistry and application. Cambridge University Press, Cambridge, pp 207-224

    Google Scholar 

  • P érez C, Falero A, Luu Duc H et al. (2006) A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J Ind Microbiol Biotechnol 33(8):719-723

    Article  CAS  Google Scholar 

  • Petkar M, Lali M, Caimi P et al. (2006) Immobilization of lipases for non-aqueous synthesis. J Mol Catal B: Enzym 39:83-90

    Article  CAS  Google Scholar 

  • Petrounia LP, Arnold FH (2000) Designed evolution of enzymatic properties. Curr Opin Biotechnol 11:325-330

    Article  CAS  Google Scholar 

  • Petschen I, Malo EA, Bosch MP et al. (1996) Highly enantioselective synthesis of long chain alkyl trifluormethyl carbinols and β-thiotrio-fluormethyl carbinols through lipases. Tetrahed Asymm 7:2135-2143

    Article  CAS  Google Scholar 

  • Pleiss J, Fisher M, Peiker M et al. (2000) Lipase engineering database. Understanding and exploit-ing sequence-structure-function relationships. J Mol Catal B: Enzym 10:491-508

    Article  CAS  Google Scholar 

  • Plou, FJ, Cruces, MA, Ferrer, M et al. (2002) Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol 96:55-66

    Article  CAS  Google Scholar 

  • Pope LE, Khalil, MH, Marcelletti JF (1999) Treatment of hyperproliferative skin disorders with C18 to C26 alphatic alcohols. US Patent 5948822. Issued on July 9, 1999

    Google Scholar 

  • Queiroz JA, Garcia FAP, Cabral JMS (1995) Hydrophobic interaction chromatography of Chro-mobacterium viscosum lipase. J Chromatogr A 707:137-142

    Article  CAS  Google Scholar 

  • Queiroz JA, Tomaz CT, Cabral JMS (2001) Hydrophobic interaction chromatography of proteins. J Biotechnol 87:143-159

    Article  CAS  Google Scholar 

  • Rashid N, Shimada Y, Ekazi S et al. (2001) Low-temperature lipase from psychrotropic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67:4064-4069

    Article  CAS  Google Scholar 

  • Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for deter-gent formulation. Proc Biochem 37:187-192

    Article  CAS  Google Scholar 

  • Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immoblization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527-534

    Article  CAS  Google Scholar 

  • Reetz MT (2001) Combinatorial and evolution-based methods in the creation of enantioselective catalyst. Angew Chem Int Ed 40: 284-310

    Article  CAS  Google Scholar 

  • Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6(2):145-150

    Article  CAS  Google Scholar 

  • Reyes HR, Hill CG, Amundson CH (1994) Interesterification reactions catalyzed by a lipase im-mobilized on a hydrophobic support. J Food Proc Preserv 18(2):119-132

    Article  CAS  Google Scholar 

  • Roberts SM (1998) Preparative biotransformations: the employment of enzymes and whole-cells in synthetic organic chemistry. J Chem Soc Perkin Trans 1:157-170

    Article  Google Scholar 

  • Roberts SM, Williamson NM (1997) Use of enzymes for the preparation of biologically active natural products and analogues in optically active form. Curr Org Chem 1:1-20

    CAS  Google Scholar 

  • Rotticci D, Rotticci-Mulder JC, Denman S et al. (2001) Improved enantioselectivity of a lipase by rational protein engineering. Chem Bio Chem 2:766-770

    CAS  Google Scholar 

  • Royon D, Daza M, Ellenrieder G et al. (2007) Enzymatic production of biodiesel from cotton seed oil using t -butanol as a solvent. Biores Technol 98(3):648-653

    Article  CAS  Google Scholar 

  • Rubin B, Dennis EA (1997) Lipases part B. Enzyme characterization and utilization. Methods in Enzymology, vol. 286. Academic Press, San Diego, 563 pp

    Book  Google Scholar 

  • Salis A, Sanjust E, Solinas V et al. (2003) Characterisation of Accurel MP1004 polypropylene powder and its use as a support for lipase immobilization. J Mol Catal B: Enzym 24-25: 75-82

    Article  CAS  Google Scholar 

  • Salis A, Monduzzi M, Solinas V (2007) Use of lipases for the production of biodiesel. In: Po-laina J, Mac Cabe AP (eds). Industrial enzymes structure, function and applications. Springer, Netherlands, pp 317-339

    Google Scholar 

  • Saxena RK, Ghosh PK, Gupta R et al. (1999) Microbial lipases: potential biocatalysts for the future industry. Curr Sci 77:101-115

    CAS  Google Scholar 

  • Saxena RK, Sheoran A, Giri B et al. (2003) Purification strategies for microbial lipases. J Microbiol Meth 52:1-18

    Article  CAS  Google Scholar 

  • Schmidt-Dannert C (1999) Recombinant lipases for biotechnological applications. Bioorg Med Chem 7:2123-2130

    Article  CAS  Google Scholar 

  • Schoevaart R, Wolbers MW, Golubovic M et al. (2004) Preparation, optimization and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754-762

    Article  CAS  Google Scholar 

  • Schulz T, Plesis J, Schmid RD (2000) Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Protein Sci 9:1053-1062

    Article  CAS  Google Scholar 

  • Secundo F, Carrea, G, Tarabiono C et al. (2006) The lid is a structural and functional determinant of lipase activity and selectivity. J Mol Catal B: Enzym 39:166-170

    Article  CAS  Google Scholar 

  • Seitz EW (1974) Industrial application of microbial lipases: a review. JAOCS 51(2):12-16

    Article  CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and application of lipases. Botechnol Adv 19:627-662

    Article  CAS  Google Scholar 

  • Sharma R, Soni SK, Vohra RM et al. (2002) Production of extracellular alkaline lipase from a Bacillus sp. RSJ1 and its application in ester hydrolysis. Ind J Microbiol 42:49-54

    Google Scholar 

  • Sharon C, Furugoh S, Yamakido T et al. (1998) Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J Ind Microbiol Biotech-nol 20:304-307

    Article  CAS  Google Scholar 

  • Shibamoto H, Matsumoto T, Fukuda H et al. (2004) Molecular engineering of Rhizopus oryzae lipase using a combinatorial protein library constructed on the yeast cell surface. J Mol Catal B: Enzym 28(4-6):235-239

    Article  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A et al. (2002) Enzymatic alcoholysis for biodiesel fuel produc-tion and application of the reaction to oil processing. J Mol Catal B: Enzym 17(3-5):133-142

    Article  CAS  Google Scholar 

  • Smith LC, Faustinella F, Chan L (1992) Lipases: three dimensional structure and mechanism of action. Curr Opin Struct Biol 2:490-496

    Article  CAS  Google Scholar 

  • Soares CMF, De Castro HF, Santana MHA et al. (2002) Intensification of lipase performance for long-term operation by immobilization on controlled pore silica in presence of polyethylene glycol. Appl Biochem Biotechnol 98-100:863-874

    Article  CAS  Google Scholar 

  • Soumanou MM, Bornschener UT, Menge U (1997) Synthesis of structured triglycerides from peanut oil with immobilized lipase. JAOCS 74:427-433

    Article  CAS  Google Scholar 

  • Soumanou MM, Bornscheuer UT (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33(1):97-103

    Article  CAS  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548-556

    Article  CAS  Google Scholar 

  • Sugihara A, Tani T, Tominaga Y (1991) Purification and characterization of a novel thermostable lipase from Bacillus sp. J Biochem 109:211-216

    CAS  Google Scholar 

  • Sunitha S, Kanjilal S, Reddy PS (2007) Ionic liquids as reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnol Lett 29:1881-1885

    Article  CAS  Google Scholar 

  • Sunna A, Hunter L, Hutton C et al. (2002) Biochemical characterization of a recombinant ther-moalkalophilic lipase and assessment of its substrate enantioselectivity. Enzyme Microb Tech-nol 31:472-476

    Article  CAS  Google Scholar 

  • Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223-238

    CAS  Google Scholar 

  • Taipa MA, Aires-Barros MR, Cabral JMS (1992) Purification of lipases. J Biotechnol 26:111-142

    Article  CAS  Google Scholar 

  • Takagi Y, Teramoto J, Kihara H et al. (1996) Thiacrown ether as regulator of lipase-catalyzed trans-sterification in organic media - practical optical resolution of allyl alcohols. Tetrahed Lett 37:4991-4992

    Article  CAS  Google Scholar 

  • Terstappen GC, Gerts AJ, Kula MR (1992) The use of detergent-based aqueous two phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia. Biotechnol Appl Biochem 16:228-235

    CAS  Google Scholar 

  • Thompson CA, Delaquis PJ, Mazza G (1999) Detection and measurement of microbial lipase activity: a review. Critic Rev Food Sci Nutr 39(2):165-187

    Article  Google Scholar 

  • Tobin MB, Gustafsson C, Huisman GW (2000) Directed evolution: the ‘rational’ basis for ‘irra-tional’ design. Curr Opin Struc Biol 10:421-427

    Article  CAS  Google Scholar 

  • Tombs MP (1995) Enzymes in the processing of fats and oils. In: Tucker GA, Woods LFJ (eds). Enzymes in food processing. Blackie Academic Professional, London, UK, pp 268-291

    Google Scholar 

  • Tombs MP, Blake GG (1982) Stability and inhibition of Aspergillus and Rhizopus lipases. Biochim Biophys Acta 700:81-89

    CAS  Google Scholar 

  • Undurraga D, Markovits A, Erazo S (2001) Cocoa butter equivalent through enzymic interesterifi-cation of palm oil midfraction. Proc Biochem 36:933-939

    Article  CAS  Google Scholar 

  • van Gerpen J (2005) Biodiesel processing and production. Fuel Proc Technol 86(10):1097-1107

    Article  CAS  Google Scholar 

  • van Kappen MD, Egmond MR (2000) Directed evolution: from a staphyloccal lipase to a phos-pholipase. Eur J Lipid Sci Technol 102:717-726

    Article  Google Scholar 

  • van Tilbeurgh H, Egloff MP, Martinez C et al. (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362: 814-820

    Article  Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artifacts. TIBTECH 15:32-38

    CAS  Google Scholar 

  • Vicente MLC, Aires-Barros MR, Cabral JMS (1990) Purification of Chromobacterium viscosum lipases using reverse micelles. Biotechnol Techn 4:137-142

    Article  CAS  Google Scholar 

  • Villeneuve P, Muderhwa JM, Graille J et al. (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular approaches. J Mol Catal B: Enzym 9:113-148

    Article  CAS  Google Scholar 

  • Vulfson EN (1994) Industrial applications of lipases. In: Woolley P, Peterson SB (eds). Lipases: their structure, biochemistry and applications. Cambridge University Press, Cambridge, pp 271-288

    Google Scholar 

  • Wang Y, Srivastava KC, Shen GJ et al. (1995) Thermostable alkaline lipase form a newly isolated Bacillus strain, A30-1 (ATCC 5384). J Ferment Bioeng 79:433-438

    Article  CAS  Google Scholar 

  • Wasserscheid P, Keim W (2000) Ionic liquids - new “solutions” for transition metal catalysis. Angew Chem 39(21):3772-3789

    Article  CAS  Google Scholar 

  • Watanabe K, Ueji SI (2001) Dimethyl sulfoxide as a co-solvent dramatically enhances the enan-tioselectivity in lipase-catalysed resolutions of 2-phenoxypropionic acyl derivatives. J Chem Soc Perkin Trans 1:1386-1390

    Article  CAS  Google Scholar 

  • Wehtje E, Adlercreutz (1997) Water activity and substrate concentration effects on lipase activity. Biotechnol Bioeng 55:798-806

    Article  CAS  Google Scholar 

  • Wilson L, Fern ández-Lorente G, Fern ández-Lafuente R et al. (2006) CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzyme Microb Technol 39:750-755

    Article  CAS  Google Scholar 

  • Wiseman A (1995) Introduction to principles. In: Wiseman A (ed). Handbook of enzyme biotech-nology, 3rd edn. Ellis Horwood Ltd, Cornwall, pp 3-8

    Google Scholar 

  • Xin JY, Li SB, Xu Y et al. (2001) Dynamic enzymatic resolution of naproxen methyl ester in a membrane bioreactor. J Chem Technol Biotechnol 76(6):579-585

    Article  CAS  Google Scholar 

  • Xu X, Balchen S, Jonsson GA et al. (2000) Production of structured lipids by lipase-catalyzed interesterification in a flat membrane reactor. J Am Oil Chem Soc 77:1035-1041

    Article  CAS  Google Scholar 

  • Yadav GD, Devi KM (2004) Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem Eng Sci 59(2):373-383

    Article  CAS  Google Scholar 

  • Yamada H, Sorimachi Y, Tagawa T (2007) Operation optimization of lipase-catalyzed biodiesel production. J Chem Eng Japan 40(7):571-574

    Article  CAS  Google Scholar 

  • Yu H, Wu J, Ching CB (2004) Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality 17(1):16-21

    CAS  Google Scholar 

  • Yu HW, Chen H, Wang X et al. (2006) Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J Mol Catal B: Enzym 43(1-4):124-127

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1988) Enzymatic catalysis in non-aqueous solvents. J Biol Chem 263:3192-3196

    Google Scholar 

  • Bi Y, Zhou M, Hu H et al. (2001) Oxidation of long chain primary alcohols to acids over the quaternary ammonium peroxotungstophosphate catalyst system. React Kin Catal 72(1):73-82

    Article  CAS  Google Scholar 

  • Bommarius AS, Drauz K, Hummel W et al. (1994) Some new developments in reductive amination with cofactor regeneration. Biocatal Biotransform 10:37-47

    Article  CAS  Google Scholar 

  • Chenault HK, Simon ES, Whitesides GM (1988) Cofactor regeneration for enzyme-catalysed syn-thesis. Biotechnol Gen Eng Rev 6:221-241

    CAS  Google Scholar 

  • Clymer J (2006). Composiciones y m étodos para el tratamiento de enfermedades gastrointestinales. Patente Mexicana No. 06001477 A.

    Google Scholar 

  • Devaux-Basseguy R, Bergel A, Comtat M (1997) Potential applications of NAD(P)-dependent oxidoreductases in synthesis: a survey. Enzyme Microb Technol 20:248-258

    Article  CAS  Google Scholar 

  • El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng 99(3):508-514

    Article  CAS  Google Scholar 

  • Godjevargova T, Dayal R, Turmanova S (2004) Gluconic acid production in bioreactor with immo-bilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange mem-brane. Macromol Biosci 4:950-956

    Article  CAS  Google Scholar 

  • Hirakawa H, Kamiya N, Kawarabayashi Y et al. (2004) Properties of an alcohol dehydrogenase from the hyperthermophilic Archaeon Aeropyrum pernix K1. J Biosci Bioeng 97(3):202-206

    CAS  Google Scholar 

  • Hummel W (1990) Enzyme-catalyzed synthesis of optically pure R(+)-phenylethanol. Biotechnol Lett 12:403-408

    Article  CAS  Google Scholar 

  • Hummel W (1997) New alcohol dehydrogenases for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 58:145-184

    CAS  Google Scholar 

  • Hummel W (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent devel-opments. TIBTECH 17:487-492

    CAS  Google Scholar 

  • Hummel W, Kula M (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1-13

    Article  CAS  Google Scholar 

  • Hummel W, Sch ütte H, Kula MR (1985) D-2-Hydroxyisocaproate dehydrogenase from Lactobacil-lus casei. A new enzyme suitable for stereospecific reduction of 2-ketocarboxylic acids. Appl Microbiol Biotechnol 21:7-15

    Article  CAS  Google Scholar 

  • Kawakami K, Nagamatsu S, Ishii M et al. (1986) Enzymatic formation of propylene bromohydrin from propylene by glucose oxidase and lactoperoxidase. Biotechnol Bioeng 28: 1007-1013

    Article  CAS  Google Scholar 

  • Kim MJ, Whitesides GM (1988) L-lactate dehydrogenase: substrate specificity and use as a catalyst in the synthesis of homochiral 2-hydroxy acids. J Am Chem Soc 110:2959-2962

    Article  CAS  Google Scholar 

  • Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci (Oxford) 28:1015-1048

    Article  CAS  Google Scholar 

  • Lin C, Yang MC (2003) Cholesterol oxidation using hollow fiber dialiyser immobilised with cholesterol oxidase: preparation and properties. Biotechnol Prog 19:361-364

    Article  CAS  Google Scholar 

  • Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369-384

    Article  CAS  Google Scholar 

  • L ópez-Gallego F, Betancor L, Hidalgo A et al. (2005) Preparation of a robust biocatalyst of D-amino acid oxidase on Sepabeads supports using the glutaraldehyde crosslinking method. En-zyme Microb Technol 37(7):750-756

    Article  CAS  Google Scholar 

  • Maekawa M (1995) Properties of enzymes for enzyme immunoassay. Nippon Rinsho. Japan J Clin Med 53:2154-2159

    CAS  Google Scholar 

  • Malherbe D F, du Toit M, Cordero-Otero R et al. (2003) Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl Microbiol Biotechnol 61:502-511

    CAS  Google Scholar 

  • Nielsen J, Raschke T, Riedel H (2005) Cosmetic and dermatological preparations in the form of o/ω-emulsions containing sterols and/or C12-C40 fatty acids. US Patent 0037036

    Google Scholar 

  • Al Pilone M S, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. Biocatal Bio-transform 20:145-159

    Article  CAS  Google Scholar 

  • Tishkov VI, Popov VO (2004) Catalytic mechanism and application of formate dehydrogenase. Biochemistry (Moscow) 69:1252-1267

    Article  CAS  Google Scholar 

  • van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration Cur-rent Opin Biotechnol 14:421-426

    Article  CAS  Google Scholar 

  • Vasic-Racki D, Jonas M, Wandrey C et al. (1989) Continuous (R)-mandelic acid production in an enzyme membrane reactor. Appl Microbiol Biotechnol 31:215-222

    Article  CAS  Google Scholar 

  • Wilson R, Clavering C, Hutchinson A (2003) Paramagnetic bead based enzyme electrochemilumi-nescence immunoassay for TNT. J Electroanal Chem 557(15):109-118

    Article  CAS  Google Scholar 

  • Yoshiro M. (2001) Lubricant for medicine or candy tablet. Japanese Patent 055342

    Google Scholar 

  • Antonietti M (2001) Surfactants for novel templating applications. Curr Opin Colloid Interface Sci 6:244-248

    Article  CAS  Google Scholar 

  • Ardao I, Benaiges MD, Caminal G et al. (2006) One step purification-immobilization of fuculose-1-phosphate aldolase, a class II dependent aldolase, by using metal-chelate supports. Enzyme Microb Technol 39:22-27

    Article  CAS  Google Scholar 

  • Asano N, Nash RJ, Molyneux RJ et al. (2000) Sugar-mimic glycosidase inhibitors: natural occur-rence, biological activity and prospects for therapeutic application. Tetrahed Asymm 11:1645-1680

    Article  CAS  Google Scholar 

  • Azema L, Bringaud F, Blonski C et al. (2000) Chemical and enzymatic synthesis of fructose ana-logues as probes for import studies by the hexose transporter in parasites. Bioorg Med Chem 8:717-722

    Article  CAS  Google Scholar 

  • Babu YS, Chand P, Bantia S et al. (2000) Bcx-1812 (rwj-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J Med Chem 43:3482-3486

    Article  CAS  Google Scholar 

  • Budde CL, Khmelnitsky YL (1999) Aldolase stability in the presence of organic solvents. Biotech-nol Lett 21:77-80

    Article  CAS  Google Scholar 

  • Calveras J, Bujons J, Parella T et al. (2006) Influence of N -amino protecting group on aldolase-catalyzed aldol additions of dihydroxyacetone phosphate to amino aldehydes. Tetrahedron 62:2648-2656

    Article  CAS  Google Scholar 

  • Castillo JA, Calveras J, Casas J et al. (2006) Fructose-6-phosphate aldolase in organic synthesis: preparation of D-fagomine, N -alkylated derivatives, and preliminary biological assays. Org Lett 8:6067-6070

    Article  CAS  Google Scholar 

  • Chen L, Dumas DP, Wong CH (1992) Deoxyribose 5-phosphate aldolase as a catalyst in asymmet-ric aldol condensation. J Am Chem Soc 114:741-748

    Article  CAS  Google Scholar 

  • Chenevert R, Dasser M (2000) Chemoenzymatic synthesis of the microbial elicitor-(-)syringolide via a fructose 1,6-diphosphate aldolase-catalyzed condensation reaction. J Org Chem 65:4529-4531

    Article  CAS  Google Scholar 

  • Clap és P, Espelt L, Navarro MA et al. (2001) Highly concentrated water-in-oil emulsions as novel reaction media for protease-catalyzed kinetically controlled peptide synthesis. J Chem Soc Perkin Trans 2:1394-1399

    Google Scholar 

  • Dreyer MK, Shulz GE (1996) Refined high resolution structure of the metal-ion dependent L-fuculose-1-phosphate aldolase (Class II) from E. coli. Acta Crystallogr D 52:1082-1091

    Article  CAS  Google Scholar 

  • De Santis G, Liu JJ, Clark DP et al. (2003) Structure-based mutagenesis approaches toward ex-panding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg Med Chem 11:43-52

    Article  Google Scholar 

  • Durany O, de Mas C, L ópez-Santín J (2005) Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Proc Biochem 40:707-716

    Article  CAS  Google Scholar 

  • Espelt L, Clap és P, Esquena J et al. (2003a) Enzymatic carbon-carbon bond formation in water-in-oil highly concentrated (gel emulsions). Langmuir 19:1337-1346

    Article  CAS  Google Scholar 

  • Espelt L, Parella T, Bujons J et al. (2003b) Stereoselective aldol additions catalyzed by dihydrox-yacetone phosphate dependent aldolases in emulsion systems. Chem Eur J 9:4887-4899

    Article  CAS  Google Scholar 

  • Espelt L, Bujons J, Parella T et al. (2005) Aldol additions of dihydroxyacetone phosphate to N -Cbz-amino aldehydes catalyzed by L-fuculose-1-phosphate aldolase in emulsion systems: in-version of stereoselectivity as a function of the acceptor aldehyde. Chem Eur J 11:1392-1401

    Article  CAS  Google Scholar 

  • Fessner WD, Sinerius G, Schneider A et al. (1991) Enzymes in organic synthesis. Part I. Diastere-oselectivity, enzymatic aldol addition with L-rhamnulose and L-fuculose-1-phosphate aldolases from E. coli. Angew Chem Int Ed Engl 30:555-58

    Article  Google Scholar 

  • Fessner WD, Walter CH (1997) Enzymatic C C bond formation in asymmetric synthesis. Top Curr Chem 184:97-194

    CAS  Google Scholar 

  • Fessner WD (1998) Enzyme mediated C C bond formation. Curr Opin Chem Biol 2:85-97

    Article  CAS  Google Scholar 

  • Fessner WD (2000) Enzymatic asymmetric synthesis using aldolases. In: Patel RN (ed). Stereose-lective biocatalysis. Marcel Dekker, New York, pp 239-265

    Google Scholar 

  • Fessner WD, Gosse C, Jaeschke G et al. (2000) Enzymes in organic synthesis. Short enzymatic synthesis of L-fucose analogs. Eur J Org Chem 1:125-132

    Article  Google Scholar 

  • Fessner WD, Helaine V (2001) Biocatalytic synthesis of hydroxylated natural products using al-dolases and related enzymes. Curr Opin Biotechnol 12:574-586

    Article  CAS  Google Scholar 

  • Fujii M, Miura T, Kajimoto T et al. (2000) Facile synthesis of 3,4-dihydroxyprolines as an appli-cation of the L-threonine aldolase-catalyzed aldol reaction. Synlett 1046-1048

    Google Scholar 

  • Garcia-Junceda E, Shen GJ, Sugai T et al. (1995) A new strategy for the cloning, overexpression and one step purification of three DHAP-dependent aldolases: rhamnulose-1-phosphate aldolase, fuculose 1-phosphate aldolase and tagatose 1-phosphate aldolase. Bioorg Med Chem 3:945-953

    Article  CAS  Google Scholar 

  • Guanti G, Banfi L, Zannetti MT (2000) Phosphonic derivatives of carbohydrates: chemoenzymatic synthesis. Tetrahed Lett 41:3181-3185

    Article  CAS  Google Scholar 

  • Guisan JM, Fern ández-Lafuente R, Rodríguez V et al. (1993) Enzyme stabilization by multipoint covalent attachment to activated preexisting supports. In: van den Tweel WJJ, Harder A, Buite-laar RM (eds). Stability and stabilization of enzymes, vol. 47. Elsevier, Amsterdam, pp 55-62

    Google Scholar 

  • Henderson I, Garcia-Junceda E, Liu KK et al. (1994) Cloning, overexpression and isolation of the type II FDP aldolase from E. coli for specificity study and synthetic application. Bioorg Med Chem 2:837-843

    Article  CAS  Google Scholar 

  • Holmberg K (1997) Microemulsions in biotechnology In: Solans C, Kunieda H (eds). Industrial applications of microemulsions. Marcel Dekker, New York, pp 69-95

    Google Scholar 

  • Jung SH, Jeong JH, Miller P et al. (1994) An efficient multigram-scale preparation of dihydroxyacetone phosphate. J Org Chem 59:7182-7184

    Article  CAS  Google Scholar 

  • Kunieda H, Rajagopalan V, Kimura E et al. (1994) Nonequilibrium structure of water in oil gel emulsions. Langmuir 10:2570-2577

    Article  CAS  Google Scholar 

  • Liu JQ, Dairi T, Itoh N et al. (2000a) Diversity of microbial threonine aldolases and their applications. J Mol Catal 10:107-115

    Article  CAS  Google Scholar 

  • Liu JQ, Odani M, Yasuoka T et al. (2000b) Gene cloning and overproduction of low-specificity D-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for parkinsonism drug. Appl Microbiol Biotechnol 54:44-51

    Article  CAS  Google Scholar 

  • Machajewski TD, Wong CH (2000) The catalytic asymmetric aldol reaction. Angew Chem Int Ed Engl 39:1352-1374

    Article  CAS  Google Scholar 

  • Mahrwald R (2004) Modern aldol reactions, vol. 1. Enolates, organocatalysis, biocatalysis and natural product synthesis. Wiley-VCH, Weinheim, 335 pp

    Google Scholar 

  • Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Eur J Biochem 212:101-105

    Article  CAS  Google Scholar 

  • Pinsach J, de Mas C, L ópez-Santín J (2006) A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode. Biochem Eng J 29:235-242

    CAS  Google Scholar 

  • Pons R, Erra P, Solans C et al. (1993) Viscoelastic properties of gel-emulsions: their relationship with structure and equilibrium properties. J Phys Chem 97:12320-12324

    Article  CAS  Google Scholar 

  • Princen HM (1979) Highly concentrated emulsions. I. Cylindrical systems. J Colloid Interface Sci 71:55-66

    Article  Google Scholar 

  • Princen HM, Kiss AD (1986) Rheology of foams and highly concentrated emulsions. III. Static shear modulus. J Colloid Interface Sci 112:427-437

    Article  CAS  Google Scholar 

  • Ramsaywak PC, Labb é G, Siemann S et al. (2004) Molecular cloning, expression, purification, and characterization of fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis -a novel Class II A tetramer. Protein Expres Purif 37:220-228

    Article  CAS  Google Scholar 

  • Richard JP (1993) Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc T 21:549-553

    CAS  Google Scholar 

  • Samland AK, Sprenger GA (2006) Microbial aldolases as C C bonding enzymes-unknown treasures and new developments. Appl Microbiol Biotechnol 71:253-264

    Article  CAS  Google Scholar 

  • Sauve V, Sygusch J (2001) Molecular cloning, expression, purification, and characterization of fructose-1,6-bisphosphate aldolase from Thermus aquaticus. Protein Expres Purif 21:293-302

    Article  CAS  Google Scholar 

  • Sch ürmann M, Sprenger GA (2001) Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem 276:11055-11061

    Article  Google Scholar 

  • Sch ürmann M, Sch ürmann M, Sprenger GA (2002) Fructose 6-phosphate aldolase and 1-deoxy-D-xylulose 5-phosphate synthase from Escherichia coli as tools in enzymatic synthesis of 1-deoxysugars. J Mol Catal B: Enzym 19:247-252

    Article  Google Scholar 

  • Shelton CM, Toone EJ (1995) Differential dye-ligand chromatography as a general purification protocol for 2-keto-3-deoxy-6-phosphogluconate aldolases. Tetrahed Asymm 6:207-211

    Article  CAS  Google Scholar 

  • Silvestri MG, Desantis G, Mitchell M et al. (2003) Asymmetric aldol reactions using aldolases. Top Stereochem 23:267-342

    Article  CAS  Google Scholar 

  • Sobolov SB, Bartoszko-Malik A, Oeschger TR et al. (1994) Crosslinked enzyme crystals of fructose diphosphate aldolase: development as a biocatalyst for synthesis. Tetrahed Lett 35:7751-7754

    CAS  Google Scholar 

  • Solans C, Pons R, Kunieda H (1998) Gel emulsions - relationship between phase behavior and formation. In: Binks BP (ed). Modern aspects of emulsion science. The Royal Society of Chemistry, Cambridge, UK, pp 367-394

    Google Scholar 

  • Solans C, Pinazo A, Caldero G et al. (2001) Highly concentrated emulsions as novel reaction media. Colloids Surf A 176:101-108

    Article  CAS  Google Scholar 

  • Steinreiber J, Sch ürmann M, Wolberg M et al. (2007) Overcoming thermodynamic and kinetic limitations of aldolase-catalyzed reactions by applying multienzymatic dynamic kinetic asymmetric transformations. Angew Chem Int Ed 46:1624-1626

    Article  CAS  Google Scholar 

  • Suau T, Calveras J, Clap és P et al. (2005) Immobilization of fuculose-1-phosphate aldolase from E. coli to glyoxal-agarose gels by multipoint covalent attachment. Biocatal Biotransform 23:241-250

    Article  CAS  Google Scholar 

  • Suau T, Alvaro G, Benaiges MD et al. (2006) Influence of secondary reactions on the synthetic efficiency of DHAP-aldolases. Biotechnol Bioeng 93:48-55

    Article  CAS  Google Scholar 

  • Takayama S, McGarvey GJ, Won CH (1997) Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Ann Rev Microbiol 51:285-310

    Article  CAS  Google Scholar 

  • Tischer W, Ihlenfeldt HG, Barzu O et al. (2001) Enzymatic synthesis of deoxyribonucleosides from deoxyribose 1-phosphate and nucleobase. Int. Patent WO014566.

    Google Scholar 

  • Vidal L, Ferrer P, Alvaro G et al. (2005a) Influence of induction and operation mode on recombinant rhamnulose-1-phosphate aldolase production by Escherichia coli using the T5 promoter. J Biotechnol 118:75-87

    Article  CAS  Google Scholar 

  • Vidal L, Calveras J, Clap és P et al. (2005b) Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its application in biocatalysis. Appl Microbiol Biotechnol 68:489-497

    Article  CAS  Google Scholar 

  • Walde P (1996) Enzymic reactions in liposomes. Curr Opin Colloid Interface Sci 1:638-644

    Article  CAS  Google Scholar 

  • Wasserman HH, Martin SF, Yamamoto Y (1999) Stereoselective carbon-carbon bond forming reactions. Elsevier, Oxford, UK, 417 pp

    Google Scholar 

  • Whalen LJ, Wong CH (2006) Enzymes in organic synthesis: aldolase-mediated synthesis of iminocyclitols and novel heterocycles. Aldrichim Acta 39:63-71

    Google Scholar 

  • Williams GJ, Woodhall T, Farnsworth LM et al. (2006) Creation of a pair of stereochemically complementary biocatalysts. J Am Chem Soc 128:16238-16247

    Article  CAS  Google Scholar 

  • Wymer N, Toone EJ (2000) Enzyme-catalyzed synthesis of carbohydrates. Curr Opin Chem Biol 4:110-119

    Article  CAS  Google Scholar 

  • Zhu W, Li ZY (2000) Synthesis of perfluoroalkylated sugars catalyzed by rabbit muscle aldolase (RAMA) J Chem Soc Perkin Trans 17:1105-1108

    Article  Google Scholar 

  • Alleman BC, Logan BE, Gilbertson RL (1995) Degradation of pentachlorophenol by fixed films of white-rot fungi in rotating tube bioreactors. Water Res 29(1):61-67

    Article  CAS  Google Scholar 

  • Archibald F, Paice MG, Jurasek L (1990) Decolorization of kraft bleachery effluent chromophores by Coriolus (Trametes) versicolor. Enzyme Microb Technol 12:846-853

    Article  CAS  Google Scholar 

  • Basheer S, Kut OM, Prenosil JE et al. (1993) Development of an enzyme membrane reactor for treatment of cyanide-containing wastewaters from the food industry. Biotechnol Bioeng 41(4):465-473

    Article  CAS  Google Scholar 

  • Bhunia A, Durani S, Wangikar PP (2001) Horseradish peroxidase catalyzed degradation of indus-trially important dyes. Biotechnol Bioeng 72:562-567

    Article  CAS  Google Scholar 

  • Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61(7):2631-2635

    CAS  Google Scholar 

  • Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788-1792

    CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hidrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154-158

    CAS  Google Scholar 

  • Chen PJ, Rosenfeldt EJ, Kullman SW et al. (2007) Biological assessments of a mixture of en-docrine disruptors at environmentally relevant concentrations in water following UV/H2 O2 ox-idation. Sci Total Environ 376(1-3):18-26

    Article  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phane-rochaete chrysosporium. Appl Environ Microbiol 56(4):1114-1118

    CAS  Google Scholar 

  • Dec J, Bollag JM (1995) Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Environ Sci Technol 29(3):657-663

    Article  CAS  Google Scholar 

  • D éziel E, Comeau Y, Villemur R (1999) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10:219-233

    Article  Google Scholar 

  • Efroymson RA, Alexander M (1995) Reduced mineralization of low concentrations of phenan-threne because of sequestering in nonaqueous-phase liquids. Environ Sci Technol 29:515-521

    Article  CAS  Google Scholar 

  • Eibes G, Lu Chau T, Feijoo G et al. (2005) Complete degradation of anthracene by manganese peroxidase in organic solvent mixtures. Enzyme Microb Technol 37(4):365-372

    Article  CAS  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT et al. (2006) Enzymatic degradation of anthracene, diben-zothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64 (3):408-414

    Article  CAS  Google Scholar 

  • Eibes G, Moreira MT, Feijoo G et al. (2007) Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidase. Chemosphere 66:1744-1751

    Article  CAS  Google Scholar 

  • Field JA, Vledder RH, van Zelst JG et al. (1996). The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent:water mixtures. Enzyme Microb Technol 18:300-308

    Article  CAS  Google Scholar 

  • Fujita M, Ike M, Kusunoki K et al. (2002) Removal of color and estrogenic substances by fungal reactor equipped with ultrafiltration unit. Water Sci Technol 2(5-6):353-358

    CAS  Google Scholar 

  • Grabski AC, Grimek HJ, Burges RR (1998) Immobilization of manganese peroxidase from Lentin-ula edodes and its biocatalytic generation of MnIII-chelate as a chemical oxidant of chlorophe-nols. Biotechnol Bioeng 60:204-215

    Article  CAS  Google Scholar 

  • Guis án JM, Bastida A, Blanco RM et al. (1997) Immobilization of enzymes acting on macromolec-ular substrates. Reduction of steric problems. In: Bickerstaff GF (ed). Methods in biotechnology. Immobilization of enzymes and cells. Humana Press, Totowa, USA, pp 261-275

    Google Scholar 

  • G ünther T, Sack U, Hofrichter M et al. (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38(2):113-122

    Article  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydro-carbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261 (36):16948-16952

    CAS  Google Scholar 

  • Heinfling A, Martínez MJ, Martínez AT et al. (1998) Transformation of industrial dyes by man-ganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788-2793

    CAS  Google Scholar 

  • Hofrichter M, Ziegenhagen D, Vares T et al. (1998) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Lett 434:362-366

    Article  CAS  Google Scholar 

  • Hublik G, Schinner F (2000) Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme Microb Technol 27:330-336

    Article  CAS  Google Scholar 

  • Isono Y, Nakajima M (2000) Membrane phase separation of aqueous/alcohol biphase mixture and its application for enzyme bioreactor. Prog Biotechnol 16:63-68

    Article  CAS  Google Scholar 

  • Jaspers CJ, Jimenez G, Penninckx MJ (1994) Evidence for a role of manganese peroxidase in the decolorization of Kraft pulp bleach plant effluent by Phanerochaete chrysosporium: effects of initial culture conditions on enzyme production. J Biotechnol 37(3):229-234

    Article  CAS  Google Scholar 

  • Johannes C, Majcherczyk A, Huttermann A (1996) Degradation of anthracene by laccase of Tram-etes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46 (3):313-317

    Article  CAS  Google Scholar 

  • Katchalski-Katzir E, Kraemer DM (2000) Eupergit○R C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10:157-176

    Article  CAS  Google Scholar 

  • Kelsey LJ, Pillarella MR, Zydney AL (1990) Theoretical analysis of convective flow profiles in a hollow-fiber membrane bioreactor. Chem Eng Sci 45:3211-3220

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(11):241-246

    Article  CAS  Google Scholar 

  • K öhler A, Sch üttoff M, Bryniok D et al. (1994) Enhanced biodegradation of phenanthrene in a biphasic culture system. Biodegradation 5:93-103

    Article  Google Scholar 

  • Kotterman MJJ, Rietberg HJ, Hage A et al. (1998) Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnol Bioeng 57(2):220-227

    Article  CAS  Google Scholar 

  • Krastanov A (2000) Removal of phenols from mixtures by co-immobilized laccase/tyrosinase and Polycar adsorption. J Ind Microbiol Biotechnol 24:383-388

    Article  CAS  Google Scholar 

  • Kuan IC, Tien M (1993) Stimulation of manganese peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90:1242-1246

    Article  CAS  Google Scholar 

  • Lante A, Crapisi A, Krastanov A et al. (2000) Biodegradation of phenols by laccase immobilised in a membrane reactor. Proc Biochem 36(1-2):51-58

    Article  CAS  Google Scholar 

  • Lee C, Yoon J, von Gunten U (2007) Oxidative degradation of N -nitrosodimethylamine by con-ventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res 41 (3):581-590

    Article  CAS  Google Scholar 

  • L ópez C, Mielgo I, Moreira MT et al. (2002) Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation. J Biotechnol 99(3):249-257

    Article  Google Scholar 

  • L ópez C, Moreira MT, Feijoo G et al. (2004) Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor. Biotechnol Prog 20(1):74-81

    Article  CAS  Google Scholar 

  • L ópez C, Moreira MT, Feijoo G et al. (2007) Dynamic modeling of an enzymatic membrane reactor for the treatment of xenobiotic compounds. Biotechnol Bioeng 97(5):1128-1137

    Article  CAS  Google Scholar 

  • MacLeod CT, Daugulis AJ (2003) Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Appl Microbiol Biotech-nol 62:291-296

    Article  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22(5):335-341

    Article  CAS  Google Scholar 

  • Marcoux J, D éziel E, Villemur R et al. (2000) Optimization of high-molecular-weight poly-cyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol 88 (4):655-662

    Article  CAS  Google Scholar 

  • M éndez-Paz D, Omil F, Lema JM (2005) Anaerobic treatment of azo dye Acid Orange 7 under batch conditions. Enzyme Microb Technol 36:264-272

    Article  CAS  Google Scholar 

  • Mielgo I, Moreira MT, Feijoo et al. (2002) Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Res 36:1896-1901

    Article  CAS  Google Scholar 

  • Mielgo I, L ópez C, Moreira MT et al. (2003) Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnol Prog 19(2):325-331

    Article  CAS  Google Scholar 

  • Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Mi-crobiol 60:1956-1961

    CAS  Google Scholar 

  • Ollikka P, Alhonm äki K, Lepp änen VM et al. (1993) Decolorization of azo, triphenyl methane, het-erocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysospo-rium. Appl Environ Microbiol 59:4010-4016

    CAS  Google Scholar 

  • Palma C, Moreira MT, Feijoo G et al. (1997) Enhanced catalytic properties of MnP by exogenous addition of manganese and hydrogen peroxide. Biotechnol Lett 19(3):263-267

    Article  CAS  Google Scholar 

  • Pasta P, Carrea G, Monzani E et al. (1999). Chloroperoxidase-catalyzed enantioselective oxida-tion of methyl phenyl sulfide with dihydroxyfumaric acid/oxygen or ascorbic acid/oxygen as oxidants. Biotechnol Bioeng 62(4):489-493

    Article  CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R et al. (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Mi-crobiol 65(9):3805-3809

    CAS  Google Scholar 

  • Prazeres DMF, Cabral JMS (1994) Enzymatic membrane bioreactors and their applications. En-zyme Microb Technol 16:738-750

    Article  CAS  Google Scholar 

  • Rodakiewicz-Nowak J, Jarosz-Wilkolazka A (2007) Catalytic activity of Cerrena unicolor laccase in aqueous solutions of water-miscible organic solvents - experimental and numerical descrip-tion. J Mol Catal B Enzym 44(2):53-59

    Article  CAS  Google Scholar 

  • Roper JC, Sarkar JM, Dec J et al. (1995) Enhanced enzymatic removal of chlorophenols in the presence of co-substrates. Water Res 29(12):2720-2724

    Article  CAS  Google Scholar 

  • Ross AC, Bell G, Halling PJ (2000) Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism. J Mol Catal B Enzym 8:183-192

    Article  CAS  Google Scholar 

  • Sasaki T, Kajino T, Li B et al. (2001) New pulp biobleaching system involving manganese per-oxidase immobilized in a silica support with controlled pore sizes. Appl Environ Microbiol 67 (5):2208-2212

    Article  CAS  Google Scholar 

  • Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese perox-idase. J Basic Microbiol 38(1):51-59

    Article  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Appl Environ Microbiol 69(7):3957-3964

    Article  CAS  Google Scholar 

  • Su árez S, Dodd MC, Omil F et al. (2007) Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res 41(12):2481

    Article  CAS  Google Scholar 

  • Timofeevski SL, Reading NS, Aust SD (1998) Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. Arch Biochem Biophys 356(2):287-295

    Article  CAS  Google Scholar 

  • Valli K, Wariishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174(7):2131-2137

    CAS  Google Scholar 

  • van Aken B, Agathos SN (2002). Implication of manganese (III), oxalate, and oxygen in the degra-dation of nitroaromatic compounds by manganese peroxidase (MnP). Appl Microbiol Biotech-nol 58(3):345-351

    Article  CAS  Google Scholar 

  • van Aken B, Godefroid LM, Peres CM et al. (1999) Mineralization of C-14-U-ring labeled 4-hydroxylamino-2,6dinitrotoluene by manganese-dependent peroxidase of the whiterot basid-iomycete Phlebia radiata. J Biotechnol 68(2-3):159-169

    Article  Google Scholar 

  • Welty JR, Wicks CE, Wilson RE (1984) Fundamentals of momentum, heat, and mass transfer. John Wiley and Sons, New York, 803 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Barberis, S. et al. (2008). Study Cases of Enzymatic Processes. In: Illanes, A. (eds) Enzyme Biocatalysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8361-7_6

Download citation

Publish with us

Policies and ethics