Skip to main content

Identifying Modifiers of Tamoxifen Sensitivity Using High-Throughput Genetic and Chemical Screens

  • Chapter
Therapeutic Resistance to Anti-Hormonal Drugs in Breast Cancer

Abstract

Endocrine therapies, which inhibit estrogen receptor (ERα) signalling, are the most common and effective treatments for ERα positive breast cancer. However, the utility of these agents is limited by the frequent development of resistance. The precise mechanisms underlying endocrine therapy resistance remain incompletely understood. In our laboratory, an RNA interference (RNAi) screen was used to identify modifiers of sensitivity to the most commonly used endocrine therapy, tamoxifen. The cyclin-dependent kinase 10 (CDK10) gene was identified as an important determinant of resistance and the mechanism whereby this gene modulates sensitivity to tamoxifen was investigated further. Silencing of CDK10 gene expression was shown to activate the MAPK signalling pathway, circumventing the reliance of breast cancer cells upon estrogen signalling. Patients with ERα positive breast tumours that express low levels of CDK10 were shown to relapse early on tamoxifen and methylation of the CDK10 gene promoter was observed in a significant proportion of patients, suggesting a mechanism for loss of CDK10 expression in tamoxifen resistant tumours. By suppressing gene expression RNAi, to a certain extent, models the pharmacological inhibition of a target protein. We performed parallel small molecule screens alongside the RNAi screen to identify compounds that sensitise to tamoxifen. Both the RNAi and small molecule screens identified the PDK1 pathway as a potential target for sensitisation to inhibit the development of endocrine therapy resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7, 261–9.

    Article  PubMed  CAS  Google Scholar 

  • Awada A, Cardoso F, Fontaine C, Dirix L, De Grève J, Sotiriou C, Steinseifer J, Wouters C, Tanaka C, Zoellner U, Tang P, Piccart M (2008). The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: Results of a phase i study with pharmacokinetics. Eur J Cancer 44(1), 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP (2003). Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12, 627–37.

    Article  PubMed  CAS  Google Scholar 

  • Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK (1992). Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O’Reilly T, Evans DB, Chen S, Lane HA (2005). Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res 11, 5319–28.

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–3.

    Article  PubMed  CAS  Google Scholar 

  • Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276, 9817–24.

    Article  PubMed  CAS  Google Scholar 

  • Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM (2000). Down-regulation of p21WAF1/CIP1 or p27kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci U S A 97, 9042–6.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006). On the origin and functions of RNA-mediated silencing: From protists to man. Curr Genet 50, 81–99.

    Article  PubMed  CAS  Google Scholar 

  • Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005). The akt/PKB pathway: Molecular target for cancer drug discovery. Oncogene 24, 7482–92.

    Article  PubMed  CAS  Google Scholar 

  • Chong CR, Sullivan DJ Jr (2007). New uses for old drugs. Nature 448, 645–6.

    Article  PubMed  CAS  Google Scholar 

  • Clark AS, West K, Streicher S, Dennis PA (2002). Constitutive and inducible akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1, 707–17.

    PubMed  CAS  Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG (2003). The price of innovation: New estimates of drug development costs. J Health Econ 22, 151–85.

    Article  PubMed  Google Scholar 

  • Early Breast Cancer Trialist Group (EBCTG) (1998). Tamoxifen for early breast cancer: An overview of the randomised trials. Lancet 351, 1461–1467.

    Google Scholar 

  • Eggert US, Kiger AA, Richter C, Perlman ZE, Perrimon N, Mitchison TJ, Field CM (2004). Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol 2, e379.

    Article  PubMed  Google Scholar 

  • El-Ashry D, Miller DL, Kharbanda S, Lippman ME, Kern FG (1997). Constitutive raf-1 kinase activity in breast cancer cells induces both estrogen-independent growth and apoptosis. Oncogene 15, 423–35.

    Google Scholar 

  • Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, Biroc SL, Alicke B, Bryant J, Yuan S, Buckman BO, Lentz D, Ferrer M, Whitlow M, Adler M, Finster S, Chang Z, Arnaiz DO (2005). Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem 280, 19867–74.

    Article  PubMed  CAS  Google Scholar 

  • Feun LG, Blessing JA, Barrett RJ, Hanjani P (1993). A phase II trial of tricyclic nucleoside phosphate in patients with advanced squamous cell carcinoma of the cervix. A gynecologic oncology group study. Am J Clin Oncol 16, 506–8.

    Article  PubMed  CAS  Google Scholar 

  • Fry MJ (2001). Phosphoinositide 3-kinase signalling in breast cancer: How big a role might it play? Breast Cancer Res 3, 304–312.

    Article  PubMed  CAS  Google Scholar 

  • Gee JM, Robertson JF, Ellis IO, Nicholson RI (2001). Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 95, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Gee JM, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, McClelland RA, Jordan N, Wakeling AE, Nicholson RI (2003). The antiepidermal growth factor receptor agent gefitinib (ZD1839/iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology 144, 5105–17.

    Article  PubMed  CAS  Google Scholar 

  • Guvakova MA, Surmacz E (1997). Overexpressed IGF-i receptors reduce estrogen growth requirements, enhance survival, and promote E-cadherin-mediated cell-cell adhesion in human breast cancer cells. Exp Cell Res 231, 149–62.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman K, Holmes FA, Fraschini G, Esparza L, Frye D, Raber MN, Newman RA, Hortobagyi GN (1996). Phase I-II study: Triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother Pharmacol 37, 254–8.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins AL, Groom CR (2002). The druggable genome. Nat Rev Drug Discov 1, 727–30.

    Article  PubMed  CAS  Google Scholar 

  • Iorns E, Lord CJ, Turner N, Ashworth A (2007). Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6, 556–68.

    Article  PubMed  CAS  Google Scholar 

  • Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M, Tutt AN, Crook T, Lord CJ, Ashworth A (2008). Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13, 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Johnston S (2005). Combinations of endocrine and biological agents: Present status of therapeutic and presurgical investigations. Clin Cancer Res 11, S889–S899.

    Google Scholar 

  • Jordan VC (1995). Tamoxifen: Toxicities and drug resistance during the treatment and prevention of breast cancer. Annu Rev Pharmacol Toxicol 35, 195–211.

    Article  PubMed  CAS  Google Scholar 

  • Kasten M, Giordano A (2001). Cdk10, a cdc2-related kinase, associates with the ets2 transcription factor and modulates its transactivation activity. Oncogene 20, 1832–1838.

    Article  PubMed  CAS  Google Scholar 

  • Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI (2003). Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144, 1032–44.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, Arteaga CL (2000). Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60, 5887–94.

    PubMed  CAS  Google Scholar 

  • Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996). Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271, 20608–16.

    Article  PubMed  CAS  Google Scholar 

  • Lin HJ, Hsieh FC, Song H, Lin J (2005). Elevated phosphorylation and activation of PDK-1/AKT pathway in human breast cancer. Br J Cancer 93, 1372–1381.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, El-Ashry D, Chen D, Ding IY, Kern FG (1995). MCF-7 breast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-sensitivity in vivo. Breast Cancer Res Treat 34, 97–117.

    Article  PubMed  CAS  Google Scholar 

  • Manche L, Green SR, Schmedt C, Mathews MB (1992). Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 12, 5238–48.

    PubMed  CAS  Google Scholar 

  • Martin LA, Head JE, Pancholi S, Salter J, Quinn E, Detre S, Kaye S, Howes A, Dowsett M, Johnston SR (2007). The farnesyltransferase inhibitor R115777 (tipifarnib) in combination with tamoxifen acts synergistically to inhibit MCF-7 breast cancer cell proliferation and cell cycle progression in vitro and in vivo. Mol Cancer Ther 6, 2458–67.

    Article  PubMed  CAS  Google Scholar 

  • McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, Gee JM, Nicholson RI (2001). Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (faslodex). Endocrinology 142, 2776–88.

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004). Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185–97.

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–9.

    Article  PubMed  CAS  Google Scholar 

  • Mittelman A, Casper ES, Godwin TA, Cassidy C, Young CW (1983). Phase i study of tricyclic nucleoside phosphate. Cancer Treat Rep 67, 159–62.

    PubMed  CAS  Google Scholar 

  • Mora A, Komander D, van Aalten DM, Alessi DR (2004). PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15, 161–70.

    Article  PubMed  CAS  Google Scholar 

  • Mukherji M, Bell R, Supekova L, Wang Y, Orth AP, Batalov S, Miraglia L, Huesken D, Lange J, Martin C, Sahasrabudhe S, Reinhardt M, Natt F, Hall J, Mickanin C, Labow M, Chanda SK, Cho CY, Schultz PG (2006). Genome-wide functional analysis of human cell-cycle regulators. Proc Natl Acad Sci U S A 103, 14819–24.

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, Jordan N, Hiscox SE, Barrow D, Gee JM (2004). Nonendocrine pathways and endocrine resistance: Observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res 10, 346S–54S.

    Article  PubMed  CAS  Google Scholar 

  • Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D (2001). Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 15, 1344–59.

    Article  PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16, 948–958.

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Bao LW, Kleer CG, Sabel MS, Griffith KA, Teknos TN, Merajver SD (2005). Protein kinase c epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Res 65, 8366–71.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Tenorio G, Stål O, Southeast Sweden Breast Cancer Group (2002). Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86, 540–545.

    Article  PubMed  Google Scholar 

  • Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A (1999). The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 20, 501–34.

    Article  PubMed  CAS  Google Scholar 

  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Rådmark O (2002). Ribonuclease activity and RNA binding of recombinant human dicer. Embo J 21, 5864–74.

    Article  PubMed  CAS  Google Scholar 

  • Ring A, Dowsett M (2004). Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11, 643–58.

    Article  PubMed  CAS  Google Scholar 

  • Sabnis G, Goloubeva O, Jelovac D, Schayowitz A, Brodie A (2007). Inhibition of the phosphatidylinositol 3-kinase/akt pathway improves response of long-term estrogen-deprived breast cancer xenografts to antiestrogens. Clin Cancer Res 13, 2751–7.

    Article  PubMed  CAS  Google Scholar 

  • Schram KH, Townsend LB (1971). The synthesis of 6-amino-4-methyl-8-(β-D-ribofuranosyl)(4-H, 8-H)pyrrolo[4,3,2-de]pyrimido[4,5-c]pyridazine, a new tricyclic nucleoside. Tetrahedron Lett 49, 4757–60.

    Article  Google Scholar 

  • Schweinsberg PD, Smith RG, Loo TL (1981). Identification of the metabolites of an antitumor tricyclic nucleoside (NSC-154020). Biochem Pharmacol 30, 2521–6.

    Article  PubMed  CAS  Google Scholar 

  • Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004). Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96, 926–35.

    PubMed  CAS  Google Scholar 

  • Stephen RL, Shaw LE, Larsen C, Corcoran D, Darbre PD (2001). Insulin-like growth factor receptor levels are regulated by cell density and by long term estrogen deprivation in MCF7 human breast cancer cells. J Biol Chem 276, 40080–6.

    Article  PubMed  CAS  Google Scholar 

  • Stram Y, Kuzntzova L (2006). Inhibition of viruses by RNA interference. Virus Genes 32, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E, Elustondo F, Chang J, Temple J, Ahmed AA, Brenton JD, Downward J, Nicke B (2007). Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512.

    Article  PubMed  CAS  Google Scholar 

  • Swanton C, Downward J (2008). Unraveling the complexity of endocrine resistance in breast cancer by functional genomics. Cancer Cell 13, 83–5.

    Article  PubMed  CAS  Google Scholar 

  • Tang CK, Perez C, Grunt T, Waibel C, Cho C, Lupu R (1996). Involvement of heregulin-beta2 in the acquisition of the hormone-independent phenotype of breast cancer cells. Cancer Res 56, 3350–8.

    PubMed  CAS  Google Scholar 

  • Treeck O, Wackwitz B, Haus U, Ortmann O (2006). Effects of a combined treatment with mTOR inhibitor RAD001 and tamoxifen in vitro on growth and apoptosis of human cancer cells. Gynecol Oncol 102, 292–9.

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13, 3191–7.

    Article  PubMed  CAS  Google Scholar 

  • Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, Minna JD, Michnoff C, Hao W, Roth Xie MGXJ, White MA (2007). Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819.

    Article  PubMed  CAS  Google Scholar 

  • Wilcken NR, Prall OW, Musgrove EA, Sutherland RL (1997). Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens. Clin Cancer Res 3, 849–854.

    PubMed  CAS  Google Scholar 

  • Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI, Hamilton AD, Polokoff M, Nicosia SV, Herlyn M, Sebti SM, Cheng JQ (2004). Akt/protein kinase b signaling inhibitor-2, a selective small molecule inhibitor of akt signaling with antitumor activity in cancer cells overexpressing akt. Cancer Res 64, 4394–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Jiang G, Yang F, Wang J (2006). Knockdown of mutant K-ras expression by adenovirus-mediated siRNA inhibits the in vitro and in vivo growth of lung cancer cells. Cancer Biol Ther 5, 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001). Cytoplasmic localization of p21cip1/WAF1 by akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3, 245–52.

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW, Shaw YJ, Kulp SK, Chen CS (2004). From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64, 4309–4318.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Iorns, E., Lord, C.J., Ashworth, A. (2009). Identifying Modifiers of Tamoxifen Sensitivity Using High-Throughput Genetic and Chemical Screens. In: Hiscox, S., Gee, J., Nicholson, R.I. (eds) Therapeutic Resistance to Anti-Hormonal Drugs in Breast Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8526-0_9

Download citation

Publish with us

Policies and ethics