Skip to main content

On the Reversible Abrupt Structural Changes in Nerve Fibers Underlying Their Excitation and Conduction Processes

  • Chapter
Phase Transitions in Cell Biology

Abstract

The cortical gel layer of nerve fibers has the properties of a cation-exchanger. Hence, this layer can, and actually does, undergo a reversible abrupt structural change when monovalent cations (e.g. Na$+$) are substituted for the divalent counter-ions (e.g. Ca$2+$). This structural change brings about a sudden rise in the water content of the layer which in turn produces a large enhancement of cation mobilities accompanied by a shift of ion-selectivity in favor of hydrophilic cations. Based on these grounds, it is argued that the electrophysiological processes known as “nerve excitation and conduction” are, basically, manifestations of abrupt structural changes in the cortical gel layer. In recent studies, we have shown that several aspects of the excitation phenomena can actually be reproduced by using synthetic polyanionic hydrogels in place of living nervous tissues. It is noted that these studies of synthetic model systems lead us to a better understanding of the process of divalent-monovalent cation-exchange in natural and artificial polyanionic gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cole, K. S. and Curtis, H. J., 1939. Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670

    Article  CAS  PubMed  Google Scholar 

  • Cole, K. S. and Hodgkin, A. L, 1939. Membrane and protoplasm resistance in the squid giant axon. J. Gen. Physiol.22, 671–687

    Article  CAS  PubMed  Google Scholar 

  • Doty, P. and Yang, J. T., 1956. Polypeptides. VII. Poly-$UPγ$-benzyl-L-glutamate: The helix-coil transition in solution. J. Am. Chem. Soc. 78, 498–500

    Article  CAS  Google Scholar 

  • Hermann, L., 1879. Allgemeine Nervenphysiologie in Handbuch der Physiologie,1ster Theil, 1–196. F. C. W. Vogel, Leipzig

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544

    CAS  Google Scholar 

  • Hodgkin, A. L. and Keynes, R. D., 1957. Movement of labelled calcium in squid giant axons.J. Physiol. (London) 138, 253–281

    CAS  Google Scholar 

  • Huizenga, J. R., Grieger, P. F., and Wall, F. T., 1950. Electrolytic properties of aqueous solutions of polyacrylic acid and sodium hydroxide. I. Transference experiments using radioactive sodium.J. Am. Chem. Soc. 72, 2636–4232

    Article  CAS  Google Scholar 

  • Ikegami, A., 1964. Hydration and ion binding of polyelectrolytes. J. Polymer Sci. A. 2, 907–921

    Google Scholar 

  • Iwasa, K. and Tasaki, I., 1980. Mechanical changes in squid giant axons associated with production of action potentials. Biochem.Biophys. Res. Commun. 95, 1328–1331

    Article  PubMed  CAS  Google Scholar 

  • Katchalsky, A. and Zwick, M., 1955. Mechanochemistry and ion exchange. J. Polymer Sci. 16, 221–234

    Article  CAS  Google Scholar 

  • Kern, W., 1939. Der osmotische Druck wässeriger Lösungen polyvalenter Säuren und ihrer Salze. Z. phys. Chem. A 184, 197–210

    Google Scholar 

  • Kuhn, W., 1962. Ändeung von chemischen Gleichgewichten und Lösligkeitgleichgewichten bei mechanischer Dehnung von Gelen.Koloid Z. u. Z. f. Polym. 182, 40–50

    Article  CAS  Google Scholar 

  • Levine, B. A. and Williams, R. J. P., 1982. The chemistry of calcium ion and its biological relevance. In:The role of calcium in biological systems(L. J. Anghileri and A. M. Tuffet-Anghileri eds), CRC Press, Inc. Florida. pp. 3–26

    Google Scholar 

  • Loeb. J., 1900. On ion-proteid compounds and their role in the mechanics of the life phenomena. I. The poisonous character of a pure NaCl solution. Am. J. Physiol. 3, 327–338

    Google Scholar 

  • Loeb, J., 1906. The Dynamics of the Living Matter, Columbia University Press., New York

    Google Scholar 

  • Matsumoto, G. and Tasaki, I. (1977) A study of conduction velocity in nonmyelinated nerve fiber. Biophys. J. 20, 1–13

    Article  PubMed  CAS  Google Scholar 

  • McClure, W. O. and Edelman, G. M., 1966. Fluorescent probes for conformational states of proteins. I. Mechanism of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe.Biochemistry. 5, 1908–1918

    Article  PubMed  CAS  Google Scholar 

  • Nernst, W., 1908. Zur Theorie des elektrischen Reizes. Pflügers Arch. f. d. ges. Physiol.122, 275–314

    Article  Google Scholar 

  • Ptitsyn, O. B., Kron, A. K., and Eizner, Yu. Ye. 1968. The models of the denaturation of globular proteins. I. Theory of globula-coil transitions in macromolecules. J. Polymer Sci. C. 16,3509–3517

    Google Scholar 

  • Ringer, S., 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (London) 4, 29–42

    CAS  Google Scholar 

  • Tanaka, T., 1981. Gels. Sci. Am. 244, 110–123

    Article  Google Scholar 

  • Tang, J. X., Wong, S., Tran, P. T., and Janmey, P. A., 1996. Counterion induced bundle formation of rodlike polyelectrolytes. Ber. Bunsenges. Phys. Chem. 100, 796–806

    CAS  Google Scholar 

  • Tasaki, I., 1982. Physiology and Electrochemistry of Nerve Fibers. Academic Press New York

    Google Scholar 

  • Tasaki, I., 1999. Rapid structural changes in nerve fibers and cells associated with their excitation processes.Jpn. J. Physiol. 49, 125–136

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I. 2002. Spread of discrete structural changes in synthetic polyanionic gels: A model of propagation of a nerve impulse. J. Theor. Biol. 218, 497–505

    PubMed  Google Scholar 

  • Tasaki, I., 2005a. Abrupt structural changes in polyanionic gels evoked by Na-Ca ion exchange: Their biological implications. Macromol. Symp. 227, 97–104

    Article  CAS  Google Scholar 

  • Tasaki, I., 2005b. Repetitive abrupt structural changes in polyanionic gels: A comparison with analogous processes in nerve fibers. J. Theor. Biol. 236, 2–11

    Article  CAS  Google Scholar 

  • Tasaki, I., 2006. A note on the local current associated with the rising phase of a propagating impulse in nonmyelinated nerve fibers. Bull. Math. Biol. 68, 483–490

    Article  PubMed  Google Scholar 

  • Tasaki, I. and Byrne P. M., 1992. Discontinuous volume transition in ionic gels and their possible involvement in the nerve excitation process. Biopolymers. 32. 1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I. and Byrne, P. M., 1994. Discontinuous volume transition induced by calcium-sodium ion exchange in anionic gels and their neurobiological implications. Biopolymers. 34, 209–215

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I., Carbone, E., Sisco, K., and Singer, I., 1973. Analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives. Biochim. Biophys. Acta.323, 220–233

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I. and Iwasa, K., 1982. Rapid pressure changes and surface displacements in the squid giant axons associated with production of action potentials.Jpn. J. Physiol. 32, 69–81

    PubMed  CAS  Google Scholar 

  • Tasaki, I. and Matsumoto, G., 2002. On the cable theory of nerve conduction. Bull. Math, Biol. 64, 1069–1082

    Article  Google Scholar 

  • Tasaki, I., Singer, I., and Takenaka, T., 1965. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J. Gen. Physiol. 48, 1095–1123

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I., Watanabe, A., Sandlin, R., and Carnay, L, 1968. Changes in fluorescence, turbidity and birefringence associated with nerve excitation.Proc. Nat. Acad. Sci. U.S.A. 61, 883–888

    Google Scholar 

  • Weber, G. and Laurence, D. J. R., 1954. Fluorescent indicators of adsorption in aqueous solution and on the solid phase.Biochem. J. 56, 31

    Google Scholar 

  • Williams, R.J. P., 1970. Tilden Lecture. The biochemistry of sodium, potassium, magnesium and calcium. Quart. Rev. Chem. Soc. 24, 331–365

    Article  CAS  Google Scholar 

  • Zimm, B. H. and Bragg, J. K., 1959. Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem Phys. 31, 526–535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tasaki, I. (2008). On the Reversible Abrupt Structural Changes in Nerve Fibers Underlying Their Excitation and Conduction Processes. In: Pollack, G.H., Chin, WC. (eds) Phase Transitions in Cell Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8651-9_1

Download citation

Publish with us

Policies and ethics