Skip to main content

History and Introduction to Polygon Models and Polyominoes

  • Chapter
Book cover Polygons, Polyominoes and Polycubes

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

In this book we will primarily be concerned with the properties and applications of self-avoiding polygons (SAP). Two closely related problems are those of polyomi-noes, and the much broader one of tilings. We will describe and discuss polyominoes and, in the context of a discussion of SAP, will briefly mention relevant aspects of the subject of tilings. In passing we will also concern ourselves with a discussion of some properties of polycubes. It will also turn out to be appropriate to discuss self-avoiding walks (SAW), as SAP can be usefully and simply related to a proper subset of SAW.

In all cases we shall be considering paths on a regular lattice. This will most often be the two-dimensional square lattice Z2, or its three-dimensional counterpart, Z3, called the simple-cubic (sc) lattice, or its higher dimensional analogue Zd, called the (d-dimensional) hyper-cubic lattice. Other two-dimensional lattices, such as the triangular (t) and hexagonal (h) lattices, and other three-dimensional lattices, such as the body-centred cubic (bcc), face-centred cubic (fcc) and tetrahedral or diamond (d) lattices will also be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Aleksandrowicz and G. Barequet (2008) Proc. 14th Ann. Int. Computing and Combina torics Conf., Dalian, China Lecture Notes in Computer Science 5092 100–109 June 2008.

    Article  MathSciNet  Google Scholar 

  2. Butera P and Comi M (1997) N-vector spin models on the simple cubic and body-centred cubic lattices Phys. Rev B 56 8212–8240

    Article  Google Scholar 

  3. D. Brydges and Y. Imbrie (2003) The Green's function for a hierarchical SAW in four dimen sions Commun. Math. Phys 239 549–584

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. T Berlin and M Kac (1952) The spherical model of a ferromagnet, Phys Rev. 86 821–835

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Conway A R and Guttmann A J (1995) On two-dimensional percolation J. Phys A:Math. Gen. 28 891–904

    Article  MATH  ADS  Google Scholar 

  6. Conway A R, Enting I G and Guttmann A J, Algebraic techniques for enumerating self-avoiding walks on the square lattice (1993), J. Phys. A:Math. Gen 26 1519–34.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. M Daoud, J P Cotton, B Farnoux, G Jannink, G Sarma, H Benoit R Dupplesix, C Picot and P-G de Gennes (1975) Solutions of flexible polymers. Neutron experiments and interpretation, Macromolecules 8 804–818

    Article  ADS  Google Scholar 

  8. P-G de Gennes, (1972) Exponents for the excluded volume problem as derived by the Wilson method, Phys. Letts A 38 339–340.

    Article  ADS  Google Scholar 

  9. H.E. Dudeney, The Canterbury Puzzles and Other Curious Problems, (Dover, New York 1958). (Reprint of 1907 edition)

    Google Scholar 

  10. N Elkies, G Kuperberg, M Larsen and J. Propp (1992) J. Alg. Comb, 1, 111–132 and 219–234.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Eden: A two-dimensional growth process. In Proc. Fourth Berkeley Symp. Math. Stat. Probab. vol 4, ed by J. Neyman (Univ. Calif. Press 1961) pp 223–239

    Google Scholar 

  12. Fekete, M, Ü ber die Verteilung der Wurzeln bei gewissenalgbraischen Gleichungen mit ganz-zahligen Koeffizienten, (1923) Math. Z 17 228–49

    Article  MathSciNet  Google Scholar 

  13. Fisher M E, Guttmann A J and Whittington S G Two-dimensional lattice vesicles and polygons (1991) J. Phys A:Math. Gen. 24 3095–3106.

    Article  ADS  MathSciNet  Google Scholar 

  14. Fisher M E and Sykes M F, Excluded volume problem and the Ising model of ferromagnetism (1959) Phys. Rev. 114 45–58

    Article  ADS  MathSciNet  Google Scholar 

  15. Flory P J The configuration of real polymer chains (1949) J. Chem. Phys. 17 303–10.

    Article  ADS  Google Scholar 

  16. S.W. Golomb: Polyominoes, (Charles Scribners' Sons, 1965)

    Google Scholar 

  17. S.W. Golomb (1954) Checkerboards and Polyominoes, American Math. Monthly, 61 No 10 675–82

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Grünbaum and G C Shephard (1989) Tilings and Patterns: An Introduction W H Freeman and Co, New York

    MATH  Google Scholar 

  19. A.J. Guttmann and D.S. Gaunt (1978) On the asymptotic number of lattice animals in bond and site percolation, J. Phys A: Math. Gen, 11 949–953

    Article  ADS  Google Scholar 

  20. Hammersley, J M, (1961) On the number of polygons on a lattice, Proc. Cam. Phil. Soc, 57 516–23.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hiley B J and Sykes M F (1961) Probability of initial ring closure in the restricted random walk model of a macromolecule (1961) J. Chem. Phys. 34 1531–37

    Article  ADS  Google Scholar 

  22. T. Hara and G. Slade, (1992) Self-avoiding walk in five or more dimensions. I. The critical behaviour, Commun. Math. Phys., 147 101–136, (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. T. Hara and G. Slade, (1992) The lace expansion for self -avoiding walks in five or more dimensions Reviews Math. Phys. 4, 235–327

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. B D Hughes (1995) Random walks and random environments, Volume 1: Random walks (Clarendon Press, Oxford)

    Google Scholar 

  25. W Jockusch J. Propp and P Schor Random domino tilings and the arctic circle theorem. Preprint. Available at arxiv.org/abs/math.CO/9801068.

    Google Scholar 

  26. Jensen I and Guttmann A J Statistics of lattice animals (polyominoes) and polygons (2000) J. Phys A:Math. Gen. 33 L257–63.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Jensen I, see www.ms.unimelb.edu.au/~iwan.

    Google Scholar 

  28. I. Jensen: Counting polyominoes: A parallel implementation for cluster computing. Lecture Notes in Computer Science, 2659 203–212 (2003)

    Article  Google Scholar 

  29. P. Kasteleyn (1961) The statistics of dimers on a lattice I, The number of dimer arrangements on a quadratic lattice Physica 27 1209–1225

    Google Scholar 

  30. Kesten H, On the number of self-avoiding walks, (1963) J. Math. Phys, 4, 960–9

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Kesten H, On the number of self-avoiding walks II, (1964) J. Math. Phys, 5, 1128–37

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Klarner D A Cell growth problems (1967) Cand. J. Math. 19 851–63.

    Article  MATH  MathSciNet  Google Scholar 

  33. W.F. Lunnon Counting hexagonal and triangular polyominoes (1972) Graph Theory and Com puting, ed. R. C Read, Academic Press pp. 87–100.

    Google Scholar 

  34. Li B, Madras N and Sokal A D Critical Exponents, hyperscaling and universal amplitude ratios for two-and three-dimensional self-avoiding walks, (1995) J. Stat. Phys. 80 661–754

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. G.F. Lawler, O. Schramm and W. Werner, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2, Proceedings of Symposia in Pure Mathematics #72 (American Mathematical Society, Providence RI, 2004), pp. 339–364, math.PR/0204277.

    Google Scholar 

  36. MacDonald D, Joseph S, Hunter D L, Moseley L L, Jan N and Guttmann A J (2000) Self-avoiding walks on the simple cubic lattice, (2000) J. Phys. A 33 5973–83.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. N Madras and G Slade The Self-Avoiding Walk, (Boston:Birkhsäuser 1993)

    MATH  Google Scholar 

  38. G.E. Martin Polyominoes: A guide to puzzles and problems in tiling, (The Mathematical As sociation of America, 1991)

    Google Scholar 

  39. B. Nienhuis, (1982) Exact critical point and critical exponents of O(n) models in two dimen sions, Phys. Rev. Lett. 49, 1062–1065

    Article  ADS  MathSciNet  Google Scholar 

  40. B. Nienhuis, (1984) Critical behaviour of two-dimensional spin models and carge asymmetry in the Coulomb gas J. Stat. Phys. 34, 731–761

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. O'Brien G L Monotonicity of the number of self-avoiding walks (1990) J. Stat. Phys, 59 969– 79

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Orr, W J C Statistical treatment of polymer solutions at infinite dilution (1947) Trans. of the Faraday soc., 43, 12–27.

    Article  Google Scholar 

  43. Prellberg T Uniform q-series asymptotics for staircase polygons, (1995) J. Phys A:Math. Gen. 28 1289–1304.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory Phys. Re ports 368, 549–727 (2002)

    MATH  MathSciNet  Google Scholar 

  45. G. Parisiand N. Sourlas (1981) Critical behaviour of branched polymers and the Lee-Yang edge singularity Phys. Rev. Letts, 46 871–874

    Article  ADS  Google Scholar 

  46. G C Rhoads (2005) Planar tilings by polyominoes, polyhexes, and polyiamonds, J. Comp and Appl. Math. 174 329–353

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Rushbrooke and Eve, (1959) On non-crossing lattice polygons J. Chem. Phys. 31, 1333–4

    Article  ADS  Google Scholar 

  48. C Richard (2002) Scaling behaviour of two-dimensional polygon models. J. Stat. Phys., 108 459493

    Article  MathSciNet  Google Scholar 

  49. C Richard, A J Guttmann and I Jensen (2001) Scaling function and universal amplitude com binations for self-avoiding polygons. J. Phys. A: Math. Gen., 34:L495L501

    Article  Google Scholar 

  50. C Richard, I Jensen and A J Guttmann (2004) Scaling function for self-avoiding polygons revisited. J. Stat. Mech.: Th. Exp., page P08007

    Google Scholar 

  51. H E Stanley (1968) Dependence of critical properties on dimensionality of spins, Phys Rev Letts, 20 589–592.

    Article  ADS  Google Scholar 

  52. D. Schattschneider (1990) Visions of Symmetry, W H Freeman and Co, New York

    Google Scholar 

  53. H.N.V. Temperley and M.E. Fisher (1961) Dimer problem in statistical mechanics—an exact result Phil Mag 6 1061–1063

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Wall F T, Hiller A L and Wheeler D J, Statistical Computation of Mean Dimensions of Macro-molecules I, (1954) J. Chem. Phys, 22 1036–41.

    Article  ADS  Google Scholar 

  55. Wall F T, Hiller A L and Atchison W F, Statistical Computation of Mean Dimensions of Macromolecules II, (1955) J. Chem. Phys, 23 913–921.

    Article  ADS  Google Scholar 

  56. Wall F T, Hiller A L and Atchison W F, Statistical Computation of Mean Dimensions of Macromolecules III, (1955) J. Chem. Phys, 23 2314–20.

    Article  ADS  Google Scholar 

  57. Wakefield A J (1951) Statistics of the simple cubic lattice Proc. Camb. Phil. Soc., 47 419–435

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Guttmann, A.J. (2009). History and Introduction to Polygon Models and Polyominoes. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_1

Download citation

Publish with us

Policies and ethics