Skip to main content

Why Are So Many Problems Unsolved?

  • Chapter
Polygons, Polyominoes and Polycubes

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

The problems discussed in this book, particularly that of counting the number of polygons and polyominoes in two dimensions, either by perimeter or area, seems so simple to state that it seems surprising that they haven't been exactly solved. The counting problem is so simple in concept that it can be fully explained to any schoolchild, yet it seems impossible to solve. In this chapter we develop what is essentially a numerical method that provides, at worst, strong evidence that a problem has no solution within a large class of functions, including algebraic, differentiably finite (D-finite) [27, 26] and at least a sub-class [7] of differentiably algebraic functions, called constructible differentiably algebraic (CDA) functions. Since many of the special functions of mathematical physics—in terms of which most known solutions are given—are differentiably finite, this exclusion renders the problem un-solvable within this class. Throughout this chapter the term D-unsolvable means that the problem has no solution within the class of D-finite functions as well as the sub-class of differentiably algebraic functions described above. In the next chapter, Rechnitzer shows how these ideas may be refined into a proof, in the case of polygons in two dimensions.

In fact, the exclusion is wider than D-finite functions, as we show that the solutions possess a natural boundary on the unit circle in an appropriately defined complex plane. This excludes not only D-finite functions, but a number of others as well—though we have no simple way to describe this excluded class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions, (Dover, New York) (1972).

    MATH  Google Scholar 

  2. R. J. Baxter, in Fundamental Problems in Statistical Mechanics, 5, (1981) 109–41. E. G. D. Cohen ed. (North Holl. Amsterdam).

    Google Scholar 

  3. R. J. Baxter, Hard hexagons: exact solution, J. Phys. A. 13, (1980) L61–70.

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Bousquet-Mélou, (Private communication).

    Google Scholar 

  5. M. Bousquet-Mélou, A. J. Guttmann, W. P. Orrick and A. Rechnitzer, Inversion relations, reciprocity and polyominoes, Annals of Combinatorics, 3, (1999), 225–30.

    Article  Google Scholar 

  6. M. Bousquet-Mélou and X. Viennot, Empilements de segments et q-énumération de polyomi-nos convexes dirigés. J. Combin. Theory Ser. A 60, (1992) 196–224.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Bergeron and C. Reutenauer, Combinatorial resolution of systems of differential equations III: a special class of differentiably algebraic series. Europ. J. Combinatorics, 11, (1990) 501–12.

    MATH  MathSciNet  Google Scholar 

  8. M. Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Disc. Math 180, (1998) 73–106.

    Article  MATH  Google Scholar 

  9. C. H. Chang, The spontaneous magnetisation of a two-dimensional rectangular Ising model, Phys. Rev. 88, (1952) 1422–6.

    Article  ADS  Google Scholar 

  10. A. R. Conway, R. Brak and A. J. Guttmann, Directed animals on two-dimensional lattices, J. Phys. A. 26, (1993), 3085–91.

    Article  ADS  Google Scholar 

  11. A. R. Conway and A. J. Guttmann, Square Lattice Self-Avoiding Walks and Corrections to Scaling, Phys. Rev. Letts. 77, (1996) 5284–7.

    Article  ADS  Google Scholar 

  12. A. R. Conway, A. J. Guttmann and M. P. Delest, The number of three-choice polygons, Mathl. Comput. Modelling 26, (1997) 51–8.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. de Neef and I. G. Enting, Series expansions from the finite lattice method, J. Phys. A: Math. Gen. 10, (1977) 801–5.

    Article  ADS  Google Scholar 

  14. D. Dhar, M. H. Phani and M. Barma, Enumeration of directed site animals on two-dimensional lattices, J. Phys. A. 15, (1982) L279–84.

    Article  MathSciNet  ADS  Google Scholar 

  15. I. G. Enting and A. J. Guttmann, In preparation.

    Google Scholar 

  16. I. G. Enting, Series Expansions from the Finite Lattice Method, Nucl. Phys. B (Proc. Suppl.) 47, (1996) 180–7.

    Article  ADS  Google Scholar 

  17. P. Flajolet, Analytic models and ambiguity of context-free languages, Theor. Comp. Sci., 49, (1987), 283–309.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. L. Glasser, D. B. Abraham and E. H. Lieb, Analytic properties of the free energy of the Ice models, J. Math. Phys, 13, (1972), 887–900.

    Article  ADS  MathSciNet  Google Scholar 

  19. A. J. Guttmann, Asymptotic Analysis of Power Series Expansions, in Phase Transitions and Critical Phenomena, 13, eds. C. Domb and J. Lebowitz, Academic Press, (1989) 1–234. (Available from www.ms.unimelb.edu.au/″tonyg)

    Google Scholar 

  20. A. J. Guttmann and A. R. Conway, Statistical Physics on the Eve of the Twenty-First Century. ed. M. T. Batchelor, (World Scientific), (1999).

    Google Scholar 

  21. A. J. Guttmann and I. Jensen, Fuchsian differential equation for the perimeter generating function of three-choice polygons, S éminaire Lotharingien de combinatoire, 54, 1–14.

    Google Scholar 

  22. Programs developed by B. Salvy, P. Zimmerman, F. Chyzak and colleagues at INRIA, France. Available from http://pauillac.inria.fr/algo

  23. M. T. Jaekel and J. M. Maillard, Symmetry relations in exactly soluble models, J. Phys. A: Math. Gen. 15, (1982) 1309–25.

    Article  ADS  MathSciNet  Google Scholar 

  24. M. T. Jaekel and J. M. Maillard, Inverse functional relation on the Potts model, J. Phys. A: Math. Gen. 15, (1982) 2241–57.

    Article  ADS  MathSciNet  Google Scholar 

  25. G. S. Joyce, On the hard hexagon model and the theory of modular functions. Phil. Trans. of the Roy. Soc. Lond., 325, (1988), 643–706.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. L. Lipshitz, D-finite power series. J. Algebra, 122, (1989) 353–73.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. P. Stanley, Differentiably finite power series, Europ. J. Comb., 1, (1980), 175–88.

    MATH  MathSciNet  Google Scholar 

  28. R. P. Stanley, Enumerative Combinatorics., 2

    Google Scholar 

  29. H. Tsukahara and T. Inami, Test of Guttmann and Enting's conjecture in the Eight Vertex Model, J. Phys. Soc. Japan 67, (1998) 1067–1070.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Guttmann, A.J. (2009). Why Are So Many Problems Unsolved?. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_4

Download citation

Publish with us

Policies and ethics