Skip to main content

Nanowire Development and Characterization for Applications in Biosensing

  • Chapter
  • First Online:
Nanosystems Design and Technology

Abstract

A nanowire is an extremely thin wire with a diameter on the order of a few nanometers and with lengths orders of magnitude larger than its diameter. The physical properties of nanowires at this scale are expected to deviate significantly from the bulk metal, due to confinement and surface effects. For example, the electrical conductivity of the wires changes considerably, due to the drastic increase in the surface-to-volume ratio, which can be exploited for sensing. Mechanical properties, such as the yield strength, are important parameters that need to be characterized for applications like flexible circuits. In order to study the nanowire properties one needs to arrange them on a surface in a controlled way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thermal expansion of KaptonTM is numbered in the range of \(30\mbox{ \textendash }60 \times1{0}^{-6}\,{\mathrm{K}}^{-1}\). From experience, the KaptonTM foils show rather the lower value of \(30 \times1{0}^{-6}\,{\mathrm{K}}^{-1}\) which is used for further calculations.

  2. 2.

    Originally, the discrepancy between the theoretical yield stress and the experimentally observed yield stresses of polycrystalline samples led to the introduction of dislocations. In reverse, the theoretical yield strength is achievable only for dislocation-free or defect-weak specimens like single crystals or whiskers.

References

  1. Natelson D (2003) Fabrication of metal nanowires. In: Recent developments in vacuum science and technology. Research Signpost, Trivandrum, pp 157–183

    Google Scholar 

  2. Cumming DRS et al (1996) Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist. Appl Phys Lett 68(3):322–324

    Article  Google Scholar 

  3. Melosh NA et al (2003) Ultrahigh-density nanowire lattices and circuits. Science 300(5616): 112–115

    Article  Google Scholar 

  4. Chai J et al (2007) Assembly of aligned linear metallic patterns on silicon. Nat Nanotechnol 2(8):500–506

    Article  MathSciNet  Google Scholar 

  5. Banqiu W, Kumar A (2007) Extreme ultraviolet lithography: a review. J Vac Sci Technol B Microelectron Nanometer Struct 25(6):1743–1761

    Article  Google Scholar 

  6. Gonsalves KE et al (2005) High performance resist for EUV lithography. Microelectron Eng 77(1):27–35

    Article  Google Scholar 

  7. Petrillo K et al (2007) Are extreme ultraviolet resists ready for the 32 nm node? 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication. A V S American Institute of Physics, Denver, CO

    Google Scholar 

  8. Solak HH (2006) Nanolithography with coherent extreme ultraviolet light. J Phys D Appl Phys 39(10):R171–R188

    Article  Google Scholar 

  9. Solak HH et al (2007) Photon-beam lithography reaches 12.5 nm half-pitch resolution. J Vac Sci Technol B 25(1):91–95

    Google Scholar 

  10. Auzelyte V et al (2007) Large area arrays of metal nanowires. 33rd International Conference on Micro- and Nano-Engineering. Elsevier, Copenhagen, Denmark

    Google Scholar 

  11. Olliges S et al (2009) Thermomechanical properties of flexible substrate supported gold nanowires. Scr Mater 60(5):5–8

    Article  Google Scholar 

  12. Olliges S et al (2007) Tensile strength of gold nanointerconnects without the influence of strain gradients. Acta Mater 55(15):5201–5210

    Article  Google Scholar 

  13. Olliges S et al (2008) In-situ observation of cracks in gold nano-interconnects on flexible substrates. Scr Mater 58(3):175–178

    Article  Google Scholar 

  14. Bohm J et al (2004) Tensile testing of ultrathin polycrystalline films: a synchrotron-based technique. Rev Sci Instrum 75(4):1110–1119

    Article  Google Scholar 

  15. Eberl C et al (2004) Ultra high-cycle fatigue in pure Al thin films and line structures. Symposium on Internal Stress and Thermo-Mechanical Behavior in Multi-Component Materials Systems held at the TMS Annual Meeting. Elsevier, Charlotte, NC

    Google Scholar 

  16. Patterson BD et al (2005) The materials science beamline at the swiss light source: design and realization. Nucl Instrum Methods Phys Res A 540(1):42–67

    Article  Google Scholar 

  17. Schmitt B et al (2001) Mythen detector system. 10th International Workshop on Vertex Detectors. Elsevier, Brunnen, Switzerland

    Google Scholar 

  18. Schmitt B et al (2003) Development of single photon counting detectors at the Swiss Light Source. 9th Pisa Meeting on Advanced Detectors. Elsevier, La Biodola, Italy

    Google Scholar 

  19. Xia ZC, Hutchinson JW (2000) Crack patterns in thin films. J Mech Phys Solids 48(6–7): 1107–1131

    Article  MATH  Google Scholar 

  20. Bohm J et al (2004) A new synchrotron-based technique for measuring stresses in ultrathin metallic films. Symposium on Nanoscale Materials and Modeling held at the 2004 MRS Spring Meeting. Materials Research Society, San Francisco, CA

    Google Scholar 

  21. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529

    Article  Google Scholar 

  22. Noyan IC, Cohen JB (eds) (1987) Residual stress. Springer, New York

    Google Scholar 

  23. Xiang Y, Vlassak JJ (2005) Bauschinger effect in thin metal films. Scr Mater 53(2):177–182

    Article  Google Scholar 

  24. Xiang Y, Vlassak JJ (2006) Bauschinger and size effects in thin-film plasticity. Acta Mater 54(20):5449–5460

    Article  Google Scholar 

  25. Dundurs J, Bogy DB (1968) Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J Appl Mech 35:460–466

    Article  Google Scholar 

  26. Beuth JL (1992) Cracking of thin bonded films in residual tension. Int J Solids Struct 29(13):1657–1675

    Article  Google Scholar 

  27. Gruber P et al (2004) Size effect on crack formation in Cu/Ta and Ta/Cu/Ta thin film systems. Symposium on Nanoscale Materials and Modeling held at the 2004 MRS Spring Meeting. Materials Research Society, San Francisco, CA

    Google Scholar 

  28. Fleck NA et al (1994) Strain gradient plasticity – theory and experiment. Acta Metallurgica Et Materialia 42(2):475–487

    Article  MathSciNet  Google Scholar 

  29. Gao H et al (1999) Mechanism-based strain gradient plasticity – I. Theory. J Mech Phys Solids 47(6):1239–1263

    Article  MATH  Google Scholar 

  30. Gryaznov VG, Trusov LI (1993) Size effects in micromechanics of nanocrystals. Prog Mater Sci 37(4):289–401

    Article  Google Scholar 

  31. Shen YF et al (2005) Tensile properties of copper with nano-scale twins. Scr Mater 52(10): 989–994

    Article  Google Scholar 

  32. Courtney T (2000) Mechanical behavior of materials, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  33. Gruber PA et al (2008) Temperature dependence of mechanical properties in ultrathin Au films with and without passivation. J Mater Res 23:2406–2419

    Article  Google Scholar 

  34. Arzt E et al (1996) Physical metallurgy of electromigration: failure mechanisms in miniaturized conductor lines. Zeitschrift für Metallkunde 87(11):934–942

    Google Scholar 

  35. Agrawal PM, Rice BM, Thompson DL (2002) Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf Sci 515(1):21–35

    Article  Google Scholar 

  36. MacKenzie R et al (2008) Electrochemical biosensors – Sensor principles and architectures. Sensors 8(3):1400–1458

    Article  MathSciNet  Google Scholar 

  37. Khanal DR et al (2007) Effects of quantum confinement on the doping limit of semiconductor nanowires. Nano Lett 7:1186–1190

    Article  Google Scholar 

  38. Foley EL et al (1999) An undergraduate laboratory experiment on quantized conductance in nanocontacts. Am J Phys 67(5):389–393

    Article  Google Scholar 

  39. Stadler B et al (2007) Nanopatterning of gold colloids for label-free biosensing. Nanotechnology 18(15):6

    Article  Google Scholar 

  40. Maheshwari V, Kane JR, Saraf F (2008) Self-assembly of a micrometers-long one-dimensional network of cemented au nanoparticles. Adv Mater 20:284–287

    Article  Google Scholar 

  41. Sannomiya T, Hafner C, Voros J (2008) In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett 8(10):3450–3455

    Article  Google Scholar 

  42. Stadler BM et al (2006) Light-induced in situ patterning of DNA-tagged biomolecules and nanoparticles. IEEE Trans Nanobiosci 5(3):215–219

    Article  Google Scholar 

  43. Yu AA et al (2005) Supramolecular nanostamping: Using DNA as movable type. Nano Lett 5(6):1061–1064

    Article  Google Scholar 

  44. Falconnet D et al (2004) A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv Funct Mater 14(8):749–756

    Article  Google Scholar 

  45. Blech K et al (2008) In-situ electrical addressing of one-dimensional gold nanoparticle assemblies. J Nanosci Nanotechnol 8(1):461–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

MacKenzie, R., Auzelyte, V., Olliges, S., Spolenak, R., Solak, H.H., Vörös, J. (2009). Nanowire Development and Characterization for Applications in Biosensing. In: Nanosystems Design and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0255-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0255-9_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0254-2

  • Online ISBN: 978-1-4419-0255-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics