Skip to main content

Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks

  • Chapter
Physics and Chemistry of the Earth’s Interior

Abstract

Typically melting occurs during decompression in ultra-high-pressure terranes, along the evolution from peak pressure to peak temperature in medium-temperature eclogite-high-pressure granulite terranes and by simple prograde heating in granulite facies and ultra-high-temperature (UHT) metamorphic terranes. The source of heat must be due to one or more processes among thickening and radiogenic heating, viscous dissipation, and heat from asthenospheric mantle. Melt-bearing rocks become porous at a few vol% melt initiating an advective flow regime. As the melt volume approaches and exceeds the melt connectivity transition (∼7 vol% melt), melt may be lost from the system in the first of several melt-loss events. In migmatites and residual granulites, a variety of microstructures indicates the former presence of melt at the grain scale and leucosome networks at outcrop scale record melt extraction pathways. This evidence supports a model of focused melt flow by dilatant shear failure at low melt volume as the crust weakens with increasing melt production. Melt ascent is initiated as ductile fractures but continues in dykes that propagate as brittle fractures. Crustal rocks undergo melting via a sequence of reactions beginning with minimal melt production at the wet solidus (generally <1 vol% melt, unless there is influx of H2O-rich fluid). The major phase of melt production is related to hydrate-breakdown melting (perhaps >50) vol% melt, depending on the fertility of the protolith composition and the intensive variables). At temperatures above the stability of the hydrate, assuming significant melt loss by this point, low-volume melt production continues by consumption of feldspar(s) and quartz at UHT conditions (generally < 10 vol% melt at peak UHTM conditions). Significant melt loss is a contributory factor to achieving UHTs because dehydration of the system limits the progress of heat-consuming melting reactions among the residual phases in the source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ague JJ (1991) Evidence for major mass-transfer and volume strain during regional metamorphism of pelites. Geology 19: 855–858

    Google Scholar 

  • Albertz M, Paterson SR, Okaya D (2005) Fast strain rates during pluton emplacement: Magmatically folded leucocratic dikes in aureoles of the Mount Stuart Batholith, Washington, and the Tuolumne Intrusive Suite. California. Geol Soc Am Bull 117: 450–465

    Google Scholar 

  • Andreoli MA, Hart RJ, Ashwal LD, Coetzee H (2006) Correlations between U, Th content and metamorphic grade in the western Namaqualand Belt, South Africa, with implications for radioactive heating of the crust. J Pet 47: 1095–1118

    Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Pet 47: 71–95

    Google Scholar 

  • Ashworth JR, McLellan EL (1985) Textures. In: Ashworth JR (ed) Migmatites. Blackie Son Ltd., Glasgow

    Google Scholar 

  • Auzanneau E, Vielzeuf D, Schmidt MW (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol 152: 125–148

    Google Scholar 

  • Baldwin JA, Brown M (2008) Age and duration of ultrahightemperature metamorphism in the Anapolis-Itaucu Complex, Southern Brasilia Belt, central Brazil-constraints from U-Pb geochronology, mineral rare earth element chemistry and traceelement thermometry. J Meta Geol 16: 213–233

    Google Scholar 

  • Baldwin JA, Brown M, Schmitz MD (2007) First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology 35: 295–298

    Google Scholar 

  • Baldwin JA, Powell R, Brown M, Moraes R, Fuck RA (2005) Mineral equilibria modelling of ultrahigh-temperature metamorphism: an example from the Anápolis-Itauçu Complex, central Brazil. J Meta Geol 23: 511–531

    Google Scholar 

  • Barboza SA, Bergantz GW, Brown M (1999) Regional granulite facies metamorphism in the Ivrea zone: Is the Mafic Complex the smoking gun or a red herring? Geology 27: 447–450

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37: 521–552

    Google Scholar 

  • Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formations of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63: 1133–1153

    Google Scholar 

  • Berger A, Burri T, Alt-Epping P, Engi M (2008) Tectonically controlled fluid flow and water-assisted melting in the middle crust: An example from the Central Alps. Lithos 102: 598–615

    Google Scholar 

  • Bingen B, van Breemen O (1998) U-Pb monazite ages in amphiboliteto granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib Mineral Petrol 132: 336–353

    Google Scholar 

  • Bingen B, Austrheim H, Whitehouse M (2001) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology. J Petrol 42: 355–375

    Google Scholar 

  • Brown M (1994) The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crustally-derived granite connection in thickened orogens. E Sci Rev 36: 83–130

    Google Scholar 

  • Brown M (1995) The late-Precambrian geodynamic evolution of the Armorican segment of the Cadomian belt (France): Distortion of an active continental margin during south-west directed convergence and subduction of a bathymetric high. Géol France 3: 3–22

    Google Scholar 

  • Brown M (1998a) Unpairing metamorphic belts: P-T paths and a tectonic model for the Ryoke Belt, southwest Japan. J Meta Geol 16: 3–22

    Google Scholar 

  • Brown M (1998b) Ridge-trench interactions and high-T-low-P metamorphism, with particular reference to the Cretaceous evolution of the Japanese Islands. In: Treloar PJ, O’Brien PJ (eds) What drives metamorphism and metamorphic reactions. Geol Soc Spec Pub 138: 131–163

    Google Scholar 

  • Brown M (2001a) Crustal melting and granite magmatism: key issues. Phys Chem Earth (A) 26: 201–212

    Google Scholar 

  • Brown M (2001b) Orogeny, migmatites and leucogranites: a review. Proceed Indian Acad Sci 110: 313–336

    Google Scholar 

  • Brown M (2002) Prograde and Retrograde Processes in Migmatites Revisited. J Meta Geol 20: 25–40

    Google Scholar 

  • Brown M (2003) Hot orogens, tectonic switching, and creation of continental crust: Comment and Reply. Geology: On-Line Forum June 2003, doi: 10.1130/0091-7613 (2003) 31

    Google Scholar 

  • Brown M (2004) Melt extraction from lower continental crust. Trans R Soc Edinburgh: Earth Sci 95: 35–48

    Google Scholar 

  • Brown M (2007a) Metamorphic conditions in orogenic belts: A record of secular change. Internat Geol Rev 49: 193–234

    Google Scholar 

  • Brown M (2007b) Crustal melting and melt extraction, ascent and emplacement in orogens: Mechanisms and consequences. J Geol Soc London 163: 709–730

    Google Scholar 

  • Brown M (2008) Granites, migmatites and residual granulites: Relationships and processes. In: Sawyer EW, Brown M (eds) Working with Migmatites. Mineralogical Association of Canada Short Course Series 38, Quebec City, Quebec

    Google Scholar 

  • Brown M, Dallmeyer RD (1996) Rapid Variscan exhumation and role of magma in core complex formation: Southern Brittany metamorphic belt, France. J Meta Geol 14: 361–379

    Google Scholar 

  • Brown M., Raith M (1996) First evidences of ultrahigh-temperature decompression from the granulite provice of southern India. J Geol Soc 153: 819–822

    Google Scholar 

  • Brown M, Solar GS (1999) The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophysics 312: 1–33

    Google Scholar 

  • Brown M, Rushmer T (2006) Evolution and Differentiation of the Continental Crust. Cambridge University Press

    Google Scholar 

  • Brown MA, Brown M, Carlson WD, Denison C (1999) Topology of syntectonic melt flow networks in the deep crust: inferences from three-dimensional images of leucosome geometry in migmatites. Amer Mineral 84: 1793–1818

    Google Scholar 

  • Burg JP, Gerya TV (2005) The role of viscous heating in Barrovian metamorphism of collisional orogegens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J Meta Geol 23: 75–95

    Google Scholar 

  • Burg JP, Schmalholz SM (2008) Viscous heating allows thrusting to overcome crustal-scale buckling: Numerical investigation with application to the Himalayan syntaxes. Earth Planet Sci Lett 274: 189–203

    Google Scholar 

  • Carrington DP, Harley SL (1995) Partial melting and phase-relations in high-grade metapelites — An experimental petrogenetic grid in the KFMASH system. Contrib Mineral and Petrol 120: 270–291

    Google Scholar 

  • Clarke GL, White RW, Lui S, Fitzherbert JA, Pearson NJ (2007) Contrasting behaviour of rare earth and major elements during partial melting in granulite facies migmatites, Wuluma Hills, Arunta Block, central Australia. J Meta Geol 25: 1–18

    Google Scholar 

  • Chopin C (2003) Ultrahigh-pressure metamorphism: tracting continental crust into the mentle. Earth Plan Sci Lett 212: 1–14. doi: 10.1016/S0012-821X (03) 00261-9

    Google Scholar 

  • Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and Differentiation of the Continental Crust Cambridge University Press

    Google Scholar 

  • Cocherie A, Legendre O, Peucatt JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U total lead determination: Implications for lead behaviour in monazite. Geochim Cosmochim Acta 62: 2475–2497

    Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Meta Geol 20: 683–696

    Google Scholar 

  • Connolly JAD, Podladchikov YY (2004) Fluid flow in compressive tectonic settings: Implications for midcrustal seismic reflectors and downward fluid migration. J Geophys Res 109: B04201 doi: 10.1029/2003JB002822

    Google Scholar 

  • Crowley JL, Ghent ED (1999) An electron microprobe study of the U-Th-Pb systematics of metamorphosed monazites: the role of Ph diffusion versus overgrowth and recrystallisation. Chem Geol 157: 285–302

    Google Scholar 

  • Currie CA, Hyndman RD (2006) The thermal structure of subduction zone back arcs. J Geophys Res 111: B08404. doi: 10.1029/2005JB004024

    Google Scholar 

  • Currie CA, Hyndman RD (2007) Reply to comment by W.P. Schellart on “The thermal structure of subduction zone back arcs”. J Geophys Res — Solid Earth 112: B11408. doi: 10.1029/2007JB005415

    Google Scholar 

  • Currie CA, Huismans RS, Beaumont C (2008) Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet Sci Lett 269: 435–446

    Google Scholar 

  • Davies JH, Von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129: 1–4

    Google Scholar 

  • Dewey JF, Robb L, Van Schalkwyk L (2006) Did Bushmanland extensionally unroof Namaqualand? Precam Res 150: 173–182

    Google Scholar 

  • Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65: 749–758

    Google Scholar 

  • Diener JFA, Powell R., White RW, Holland TJB (2007) A new thermodynamic model for clino-and orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Meta Geol 25: 631–656

    Google Scholar 

  • Diener JFA, White RW, Powell R (2008) Granulite facies metamorphism and subsolidus fluid-absent reworking, Strangways Range, Arunta Block, central Australia. J Meta Geol 26: 603–622

    Google Scholar 

  • Du Bernard X, Eichhubl P, Aydin A (2002) Dilation bands: A new form of localised failure in granular media. Geophys Res Lett 29: doi: 10.1029/2002GL01 5966

    Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. J Pet 46: 2167–2195

    Google Scholar 

  • Eichhubl P, Aydin A (2003) Ductile opening-mode fracture by pore growth and coalescence during combustion alteration of siliceous mudstone. J Struct Geol 25: 121–134

    Google Scholar 

  • Eichhubl P, Aydin A, Lore J (2001) Opening-mode fracture in siliceous mudstone at high homologous temperature — effective of surface forces. Geophys Res Lett 28: 1299–1302

    Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-Zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154: 429–437

    Google Scholar 

  • Fernandez M, Marzan I, Correia A, Ramalho E (1998) Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics 291: 29–53

    Google Scholar 

  • Fitzsimons ICW, Kinny PD, Harley SL (1997) Two stages of zircon and monazite growth in anatectic leucognetiss: SHRIMP constraints and the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova 9: 47–51

    Google Scholar 

  • Florian G, Bussy F, Epard JL, Baumgartner L (2008) Water-assisted migmatisation of metagraywackes in a Variscan shear zone, Aiguilles-Rouges massif, western Alps. Lithos 102: 575–597

    Google Scholar 

  • Francheteau J, Jaupart C, Shen XJ, Kang WH, Lee DL, Bai JC, Wei HP, Deng HY (1984) High heat-flow in southern Tibet. Nature 307: 32–36

    Google Scholar 

  • Fraser G, Ellis E, Eggins S (1997) Zirconium abundance in granulitefacies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25: 607–610

    Google Scholar 

  • Gerdes A, Worner G, Henk A (2000) Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc London 157: 577–587

    Google Scholar 

  • Groome WG, Thorkelson DJ (2008) The three-dimensional thermomechanical signature of ridge subduction and slab window migration. Tectonophysics doi: 10.1016/j.tecto.2008.07.003

    Google Scholar 

  • Guernina S, Sawyer EW (2003) Large-scale melt-depletion in granulite terranes: An example from the Archean Ashuanipi Subprovince of Quebec. J Meta Geol 21: 181–201

    Google Scholar 

  • Hanchar JM, Watson EB (2003) Zircon saturation thermometry. Rev Mineral Geochem 53: 89–112

    Google Scholar 

  • Harley SL (1998a) On the occurrence and characterisation of ultrahigh-temperature (UHT) crustal metamorphism. In: Treloar PJ, O’Brien PJ (eds) What drives metamorphism and metamorphic reactions? Geol Soc Spec Publ

    Google Scholar 

  • Harley SL (1998b) Ultrahigh-temperature granulite metamorphism (1050 degrees C, 12 kbar) and decompression in garnet (Mg 70)-orthopyroxene-sillimanite gneisses from Rauer Group, East Antarctica. J Meta Geol 16: 541–562

    Google Scholar 

  • Harley SL (2004) Extending our understanding of ultrahigh-temperature crustal metamorphism. J Mineral Petrol Sci 99: 140–562

    Google Scholar 

  • Harley SL (2008) Refining the P-T records of UHT crustal metamorphism. J Meta Geol 26: 125–154. DOI: 10.1111/j.1525-1314.2008.00765.x

    Google Scholar 

  • Harley SL, Kelly NM (2007) The impact of zircon-garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains: An example from the Rauer Islands. East Antarctica. Chem Geol 241: 62–87

    Google Scholar 

  • Harley SL, Kelly NM, Moeller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3: 25–30

    Google Scholar 

  • Harris NBW, Inger S (1992) Trace-element modelling of pelitederived granites. Contrib Mineral Petrol 110: 46–56

    Google Scholar 

  • Hasalova P, Schulmann K, Lexa O, et al. (2008a) Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. J Meta Geol 26: 29–53

    Google Scholar 

  • Hasalova P, Stipska P, Powell R, et al. (2008b) Transforming mylonitic metagranite by open-system interactions during melt flow. J Meta Geol 26: 55–80

    Google Scholar 

  • Hermann J (2002) Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol 143: 219–235

    Google Scholar 

  • Hermann J, Green DH (2001) Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett 188: 149–168

    Google Scholar 

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Meta Geol 21: 833–852

    Google Scholar 

  • Hobbs B, Regenauer-Lieb K, Ord A. (2007) Thermodynamics of folding in the middle to lower crust. Geology 35: 175–178

    Google Scholar 

  • Holk GJ, Taylor HP (2000) Water as a petrologic catalyst driving O18/O-16 homogenisation and anatexis of the middle crust in the metamorphic core complexes of British Columbia. Internal Geol Rev 42: 97–130

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Meta Geol 16: 309–343

    Google Scholar 

  • Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145: 492–501

    Google Scholar 

  • Holland TJB, Powell R (2001) Calculation of phase relations involving haplogranite melts using an internally consistent dataset. J Pet 42: 673–683

    Google Scholar 

  • Holness MB, Sawyer EW (2008) On the pseudomorphing of meltfilled pores during the crystallisation of migmatites. J Pet, 49: 1343–1363, doi: 10.1093/petrology/egn028

    Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallisation of protolith igneous zircon. J Meta Geol 18: 423–439

    Google Scholar 

  • Hyndman RD, Currie CA, Mazzotti SP (2005) Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15: 4–10

    Google Scholar 

  • Inger S, Harris N (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34: 345–368

    Google Scholar 

  • Ito G, Martel SJ (2002) Focusing of magma in the upper mantle through dike interaction. J Geophys Res 107: B10, 2223, doi: 10.1029/2001JB000251

    Google Scholar 

  • Jackson MD, Cheadle MJ, Atherton MP (2003) Quantitative modelling of granitic melt generation and segregation in the continental crust. J Geophys Res-Solid Earth 108: Art. No. 2332

    Google Scholar 

  • Jamieson RA, Beaumont C, Nguyen MH, Lee B (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Meta Geol 20: 9–24

    Google Scholar 

  • Janousek V, Holub FV (2007) The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118: 75–86

    Google Scholar 

  • Johnson T, Brown M (2004) Quantitative Constraints on Metamorphism in the Variscides of Southern Brittany—a Complementary Pseudosection Approach. J Pet 38: 1237–1259

    Google Scholar 

  • Johnson TE, Hudson NFC, Droop GTR (2001) Melt segregation structures within the Inzie Head gneisses of the northeastern Dalradian. Scottish J Geol 37: 59–72

    Google Scholar 

  • Johnson TE, Hudson NFC, Droop GTR (2003) Evidence for a genetic granite-migmatite link in the Dalradian of NE Scotland. J Geol Soc 160: 447–457

    Google Scholar 

  • Johnson TE, Brown M, Solar GS (2003) Low-pressure subsolidus and suprasolidus phase equilibria in the MnNCKFMASH system: Constraints on conditions of regional metamorphism in western Maine, northern Appalachians. Amer Mineral 88: 624–638

    Google Scholar 

  • Johnson TE, Gibson RL, Brown M, Buick IS, Cartwright I (2003) Partial melting of metapelitic rocks beneath the Bushveld Complex, South Africa. J Pet 44: 789–813

    Google Scholar 

  • Johnson T, Brown M, Gibson R, Wing B (2004) Spinel-cordierite symplectites replacing andalusite: Evidence for melt-assisted diapirism in the Bushveld Complex, South Africa. J Meta Geol 22: 529–545. doi: 10.1111/j.1525-1314.2004.00531.x

    Google Scholar 

  • Johnson TE, White RW, Powell R (2008) Partial melting of metagreywacke: a calculated mineral equilibria study. J Meta Geol 26: 837–853

    Google Scholar 

  • Kelly NM, Harley SL (2005) An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib Mineral Petrol 149: 57–84

    Google Scholar 

  • Kelly NM, Clarke GL, Harley SL (2006) Monazite behaviour and age significance in poly-metamorphic high-grade terrains: A case study from the western Musgrave Block, central Australia. Lithos 88: 100–134

    Google Scholar 

  • Kelsey DE (2008) On ultrahigh-temperature crustal metamorphism. Gondwana Res 13: 1–29

    Google Scholar 

  • Kelsey DE, White RW, Holland TJB, Powell R (2004) Calculated phase equilibria in K2O—FeO-MgO-Al2O3-SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. J Meta Geol 22: 559–578

    Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Meta Geol 26: 199–212

    Google Scholar 

  • Kincaid C, Silver P (1996) The role of viscous dissipation in the orogenic process. Earth Planet Sci Lett 142: 271–288

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Amer Mineral 68: 277–279

    Google Scholar 

  • Lang HM, Gilotti JA (2007) Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. J Meta Geol 25: 129–147

    Google Scholar 

  • Laporte D, Rapaille C, Provost A (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths. In: Bouchez JL, Hutton DHW, Stephens WE (eds.) Granite: From segregation of melt to emplacement fabrics. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Leichmann J, Novak M, Burianek D, Burger D (2007) High-temperature to ultrahigh-temperature metamorphism related to multiple ultrapotassic intrusions: evidence from garnet-sillimanitecordierite kinzigite and garnet-orthopyroxene migmatites in the eastern part of the Moldanubian Zone (Bohemian Massif). Geol Carpathica 58: 415–425

    Google Scholar 

  • Leloup PH, Kienast JR (1993) High-temperature metamorphism in a major strike-slip shear zone—the Ailao-Shan-Red River, Peoples Republic of China. Earth Planet Sci Lett 118: 213–234

    Google Scholar 

  • Leloup PH, Ricard Y, Battaglia J, Lacassin R (1999) Shear heating in continental strike-slip shear zones: model and field examples. Geophys J Internat 136: 19–40

    Google Scholar 

  • Le Pichon X, Henry P, Goffe B (1997) Uplift of Tibet: From eclogites to granulites — Implications for the Andean Plateau and the Variscan belt. Tectonophysics 273: 57–76

    Google Scholar 

  • Liu L, Zhang J, Green HW, Jin Z, Bozhilov KN (2007) Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km. Eos, Trans Amer Geophys Union 86: V51E–08

    Google Scholar 

  • Marchildon N, Brown M (2001) Melt segregation in late syn-tectonic anatectic migmatites: an example from the Onawa Contact Aureole, Maine, U.S.A.. Phys Chem Earth (A) 26: 225–229

    Google Scholar 

  • Marchildon N, Brown M (2002) Grain-scale melt distribution in two contact aureole rocks: Implication for controls on melt localisation and deformation. J Meta Geol 20: 381–396

    Google Scholar 

  • Marchildon N, Brown M (2003) Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany: implications for melt-transfer at grain-to orogen-scale. Tectonophysics 364: 215–235

    Google Scholar 

  • Martignole J (2008) Is the dehydration of migmatites by melt extraction a precursor to UHT metamorphism? Québec 2008, GAC-MAC-SEG-SGA, Abstracts Vol 33: 105

    Google Scholar 

  • Martignole J, Martelat JE (2003) Regional-scale Grenville-age UHT metamorphism in the Mollendo-Camana block (basement of the Peruvian Andes). J Meta Geol 21: 99–120

    Google Scholar 

  • McCaig AM, Wickham SM, Taylor HP (1990) Deep fluid circulation in Alpine shear zones, Pyrenees, France — Field and oxygen isotope studies. Contrib Mineral Petrol 106: 41–60

    Google Scholar 

  • McKenzie D, Priestley K (2008) The influence of lithospheric thickness variations on continental evolution. Lithos. doi: 10.1016/j.lithos.2007.05.005

    Google Scholar 

  • McLaren S, Sandiford M, Powell R, Neumann N, Woodhead J. (2006) Palaeozoic intraplate crustal anatexis in the Mount Painter province, South Australia: timing, thermal budgets and the role of crustal heat production. J Pet 47: 2281–2302

    Google Scholar 

  • Milord I, Sawyer EW, Brown M (2001) Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St Malo, France. J Pet 42: 487–505

    Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kroner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Meta Geol 20: 727–740

    Google Scholar 

  • Moller A, Hensen BJ, Armstrong RA, Mezger K, Ballevre M (2003) U-Pb zircon and monazite age constraints on granulite-facies metamorphism and deformation in the Strangways Metamorphic Complex (central Australia). Contrib Mineral Petrol 145: 406–423

    Google Scholar 

  • Möller A, Hellebrand E, Moraes R, Mocek B (2007) REE distribution between zircon and orthopyroxene in granulites as a link between petrology and geochronology. Geochim Cosmochim Acta 71: A680–A680

    Google Scholar 

  • Montel JM, Foret A, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131: 37–53

    Google Scholar 

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes. 2. Compositions of minerals and melts. Contrib Mineral Petrol 128: 176–196

    Google Scholar 

  • Moraes R, Brown M, Fuck RA, Camargo MA, Lima TM (2002) Characterisation and P-T evolution of melt-bearing ultrahigh-temperature granulites: an example from the Anápolis-Itauçu Complex of the Brasília Fold Belt, Brazil. J. Pet 43: 1673–1705

    Google Scholar 

  • O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Meta Geol 21: 3–20

    Google Scholar 

  • Osanai Y, Nakano N, Owada M, Nam TN, Miyamoto T, Thi Minh N, Van Nam N, Van Tri T (2008) Collision zone metamorphism in Vietnam and adjacent South-eastern Asia: Proposition for Trans Vietnam Orogenic Belt. J Mineral Petrol Sci 103: 226–241

    Google Scholar 

  • Patiño-Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernández C, Vigneresse J-L (eds) Understanding Granites: Integrating New and Classical Techniques. Geol Soc London Spec Publ 168: 55–75

    Google Scholar 

  • Petrini K, Podladchikov Y (2000) Lithospheric pressure-depth relationship in compressive regions of thickened crust. J Meta Geol 18: 67–77

    Google Scholar 

  • Pattison DRM, Harte B (1988) Evolution of structurally contrasting migmatites in the 3-kbar Ballachulish aureole, Scotland. J Meta Geol 6: 475–494

    Google Scholar 

  • Peressini G, Quick JE, Sinigoi S, Hofmann AW, Fanning M (2007) Duration of a large mafic intrusion and heat transfer in the lower crust: a SHRIMP U-Pb zircon study in the Ivrea-Verbano Zone (Western Alps, Italy). J Pet 48: 1185–1218

    Google Scholar 

  • Platt JP (1998) Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alboran extensional basin, western Mediterranean. Tectonics 17: 671–689

    Google Scholar 

  • Platt JP, England PC (1994) Convective removal of lithosphere beneath mountain belts — thermal and mechanical consequences. Am J Sci 294: 307–336

    Google Scholar 

  • Platt JP, Whitehouse MJ, Kelley SP, Carter A, Hollick L (2003) Simultaneous extensional exhumation across the Alboran Basin: Implications for the causes of late orogenic extension. Geology 31: 251–254

    Google Scholar 

  • Powell R (1983) Processes in granulite facies metamorphism. In Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva, Nantwich

    Google Scholar 

  • Powell R, Downes J (1990) Garnet porphyroblast-bearing leucosomes in metapelites: Mechanisms, phase diagrams and an example from Broken Hill. In: Ashworth JR, Brown M (eds) High temperature metamorphism and crustal anatexis. Unwin Hyman, London

    Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations. 3. Applications to geobarometry, worked examples and a computer-program. J Meta Geol 6: 173–204

    Google Scholar 

  • Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Meta Geol 16: 577–588

    Google Scholar 

  • Powell R, Guiraud M, White RW (2005) Truth and beauty in metamorphic phase equilibrias: Conjugate variables and phase diagrams. Can Mineral 43: 21–33

    Google Scholar 

  • Raith M, Karmakar S, Brown M (1997) Ultrahigh-temperature metamorphism and multi-stage decompressional evolution of sapphirine granulites from the Palni Hill Ranges, Southern India. J Meta Geol 15: 379–399

    Google Scholar 

  • Regenauer-Lieb K (1999) Dilatant plasticity applied to Alpine collision Ductile void growth in the intraplate area beneath the Eifel volcanic field. J Geodyn 27: 1–21

    Google Scholar 

  • Rosenberg CL, Riller U (2000) Partial-melt topology in statically and dynamically recrystallised granite. Geology 28: 7–10

    Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184: 123–138

    Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140: 458–468

    Google Scholar 

  • Rubatto D, Hermann J, Buick IS (2006) Temperature and bulk composition control on the growth of monazite and zircon during lowpressure anatexis (Mount Stafford, central Australia. J Petrol 47: 1973–1996

    Google Scholar 

  • Rushmer T (1993) Experimental high-pressure granulites — some applications to natural mafic xenolith suites and Archean granulite terranes. Geology 21: 411–414

    Google Scholar 

  • Rutter EH (1997) The influence of deformation on the extraction of crustal melts: A consideration of the role of melt-assisted granular flow. In: Holness MB (ed) Deformation-enhanced fluid transport in the Earth’s crust and mantle. Chapman and Hall, London

    Google Scholar 

  • Rutter EH, Mecklenburg J (2006) The extraction of melt from crustal protoliths and the flow behavior of partially molten crustal rocks: an experimental perspective. In: Brown M., Rushmer T (eds) Evolution and Differentiation of the Continental Crust. Cambridge University Press

    Google Scholar 

  • Sandiford M, Powell R (1991) Some remarks on high-temperature-low-pressure metamorphism in convergent orogens. J Meta Geol 9: 333–340

    Google Scholar 

  • Sawyer EW (1986) The influence of source rock type, chemicalweathering and sorting on the geochemistry of elastic sediments from the Quetico Meta-Sedimentary Blet, Superior Province, Canada. Chem Geol 55: 77–95

    Google Scholar 

  • Sawyer EW (1996) Melt segregation and magma flow in migmatites: implications for the generation of granite magmas. Trans R Soc Edinburgh: Earth Sci 87: 85–94

    Google Scholar 

  • Sawyer EW (1999) Criteria for the recognition of partial melting. Phys Chem Earth (A) 24: 269–279

    Google Scholar 

  • Sawyer EW (2001) Melt segregation in the continental crust: Distribution and movement of melt in anatectic rocks. J Meta Geol 18: 291–309

    Google Scholar 

  • Schaltegger U, Fanning CM, Gunther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth annealing and recrystallisation of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134: 186–201

    Google Scholar 

  • Schellart WP (2007) Comment on “The thermal structure of subduction zone back ares. J Geophys Res — Solid Earth 112: Bll407. doi: 10.1029/2007/JB005287

    Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228: 65–84

    Google Scholar 

  • Selbekk R, Skjerlie KP, Pedersen RB (2000) Generation of anorthositic magma by H2O-fluxed anatexis of silica-undersaturated gabbro: an example from the north Norwegian Caledonides. Geol Mag 137: 609–621

    Google Scholar 

  • Sibson RH (1986) Earthquakes and rock deformation in crustal fault zones. An Rev Earth Planet Sci 14: 149–175

    Google Scholar 

  • Simakin A, Talbot C (2001) Transfer of melt between microscopic pores and macroscopic veins in migmatites. Phys Chem Earth 26: 363–367

    Google Scholar 

  • Slagstad T, Jamieson RA, Culshaw NG (2005) Formation, crystallisation, and migration of melt in the mid-orogenic crust: Muckoka domain migmatites, Grenville Province, Ontario. J Pet 46: 893–919

    Google Scholar 

  • Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: Possible source of peraluminous leucogranite in plutons? J Petrol 42: 789–823

    Google Scholar 

  • Stevens G, Villaros A, Moyen JF (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35: 9–12

    Google Scholar 

  • Stüwe K (1998) Heat sources of Cretaceous metamorphism in the Eastern Alps — a discussion. Tectonophysics 287: 251–269

    Google Scholar 

  • Stüwe K (2007) Geodynamics of the lithosphere. Springer

    Google Scholar 

  • Stüwe K, Sandiford M (1994) Contribution of deviatoric stresses to metamorphic P-T paths — an example appropriate to low-P, high-T metamorphism. J meta. Geol 12: 445–454

    Google Scholar 

  • Stüwe K, Sandiford M, Powell R (1993) Episodic metamorphism and deformation in low-pressure, high-temperature terranes. Geology 21: 829–832

    Google Scholar 

  • Symmes GH, Ferry JM (1995) Metamorphism, fluid-flow and partial melting in pelitic rocks from the Onawa contact aureole, Central Maine, USA. J Pet 36: 587–612

    Google Scholar 

  • Tomkins HS, Williams IS, Ellis DJ (2005) In situ U-Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. J Meta Geol 23: 201–215

    Google Scholar 

  • Turner FJ (1968) Metamorphic Petrology. McGraw-Hill

    Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geological models and implications for isotopic inheritance. Trans R Soc Edinburgh-Earth Sci 87: 43–56

    Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallisation thermometers for zircon and rutile. Contrib Mineral Petrol 151: 413–433

    Google Scholar 

  • Watt GR, Harley SL (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during waterundersaturated partial melting. Contrib Mineral Petrol 114: 550–566

    Google Scholar 

  • Upton P, Koons PO, Chamberlain CP (1995) Penetration of deformation-driven meteoric water into ductile rocks: Isotopic and model observations from the Southern alps, New Zealand. New Zealand J Geol Geophys 38: 535–543

    Google Scholar 

  • Vernon RH, Collins WJ (1988) Igneous microstructures in migmatites. Geology 16: 1126–1129

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental-determination of the fluid-absent melting relations in the pelitic system — consequences for crustal differentiation. Contrib Mineral Petrol 98: 257–276

    Google Scholar 

  • Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. 1. Fluid-absent experiments and phase-relationships. Contrib Mineral Petrol 117: 375–393

    Google Scholar 

  • Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol 141: 251–267

    Google Scholar 

  • Vielzeuf D, Vidal Ph (1990) Granulites and Crustal Evolution. Kluwer Academic Publishers

    Google Scholar 

  • Waters DJ (1988) Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa. J Meta Geol 6: 387–404

    Google Scholar 

  • Watt GR, Oliver NHS, Griffin BJ (2000) Evidence for reaction-induced microfracturing in granulite facies pelitic migmatites. Geology 28: 331–334

    Google Scholar 

  • White RW (2008) Insights gained from the petrological modelling of migmatites: Particular reference to mineral assemblages and common replacement textures. In: Sawyer EW, Brown M (eds) Working with Migmatites. Mineralogical Association of Canada Short Course Series 38, Quebec City, Quebec

    Google Scholar 

  • White RW, Powell R (2002) Melt loss and the preservation of granulite facies mineral assemblages. J Meta Geol 20: 521–632

    Google Scholar 

  • White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Meta Geol 18: 497–511

    Google Scholar 

  • White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J Meta Geol 19: 139–153

    Google Scholar 

  • White RW, Powell R, Clarke G (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Meta Geol 20: 41–55

    Google Scholar 

  • White RW, Powell R, Clarke G (2003) Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: Migmatites from Mt. Stafford, central Australia. J Petrol 44: 1937–1960

    Google Scholar 

  • White RW, Powell R, Halpin JA (2004) Spatially-focused melt formation in aluminous metapelites from Broken Hill, Australia. J Meta Geol 22: 825–845

    Google Scholar 

  • White RW, Pomroy NE, Powell R (2005) An in situ metatexitediatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. J Meta Geol 23: 579–602

    Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Meta Geol 25: 511–527

    Google Scholar 

  • Wickham SM, Taylor HP (1987) Stable isotope constraints on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metamorphism and crustal anatexis in the Pyrenees. Contrib Mineral Petrol 95: 255–268

    Google Scholar 

  • Williams IS (2001) Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and hostrock partial melting, Cooma Complex, southeastern Australia. Aus J Earth Sci 48: 557–580

    Google Scholar 

  • Williams ML, Jercinovic MJ (2002) Microprobe monazite geochronology: putting absolute time into microstructural analysis. J Struct Geol 24: 1013–1028

    Google Scholar 

  • Williams ML, Jercinovic MJ, Terry MP (1999) Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistate tectonic histories. Geology 27: 1023–1026

    Google Scholar 

  • Xia QX, Zheng YF, Zhou LG (2008) Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol 247: 36–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Indian National Science Academy, New Delhi

About this chapter

Cite this chapter

Brown, M., Kothonen, F.J. (2009). Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks. In: Gupta, A.K., Dasgupta, S. (eds) Physics and Chemistry of the Earth’s Interior. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0346-4_4

Download citation

Publish with us

Policies and ethics