Skip to main content

Introduction to Metamaterials

  • Chapter
  • First Online:
Metamaterials

Abstract

There have been increasing interests in metamaterials in the past 10 years in the scientific communities. However, metamaterials are sometimes regarded as left-handed materials or negative refractive index materials by a lot of people including researchers. In fact, the rapid development in this exciting area has shown that metamaterials are far beyond left-handed materials. In this chapter, we will clarify what metamaterial is and report the recent progress on metamaterials. We also summarize the important issues for the development and future of metamaterials, including the optical transformation, effective medium theory for periodic structures, broadband and low-loss metamaterials, rapid design of metamaterials, and potential applications. The impact of computational electromagnetics on metamaterials is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J.L.: Microwave circuits. Van Nostrand Reinhold, Princeton, NJ, 304 (1964)

    Google Scholar 

  2. Baena, J.D., Bonache, J., Martin, F., et al.: Equivalent-circuit models for split- ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Micro. Theo. Tech. 53, 1451–1461 (2005)

    Article  Google Scholar 

  3. Baena, J.D., Marques, R., Medina, F., Martel, J.: Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 69, 014402 (2004)

    Article  Google Scholar 

  4. Caloz, C., Itoh, T.: Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. IEEE-AP-S Digest 2, 412–415, San Antonio, TX (2002)

    Google Scholar 

  5. Caloz, C., Itoh, T.: Transmission line approach of left-handed (LH) structures and microstrip realization of a low-loss broadband LH filter. IEEE Trans. Antennas Propagat. 52, 1159–1166 (2004)

    Article  Google Scholar 

  6. Caloz, C., Itoh, T.: Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Wiley-IEEE Press (2006)

    Google Scholar 

  7. Chen, H., Chan, C.T.: Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 90, 241105 (2007)

    Article  Google Scholar 

  8. Chew, W.C., Jin, J.-M., Michielssen, E., Song, J.-M.: Fast and efficient algorithms in computational electromagnetics. Artech House Publishers, Boston (2001)

    Google Scholar 

  9. Chin, J.Y., Lu, M., Cui, T.J.: Metamaterial polarizers by electric-field-coupled resonators. Appl. Phys. Lett. 93, 251903 (2008)

    Article  Google Scholar 

  10. Chin, J.Y., Gollub, J.G., Mock, J.J., Liu, R., Harrison, C., Smith, D.R., Cui, T.J.: An efficient broadband metamaterial wave retarder. Opt. Express 17, 7640–7647 (2009)

    Article  Google Scholar 

  11. Cui, T.J., Ma, H.F., Liu, R., Zhao, B., Cheng, Q., Chin, J.Y.: A symmetrical circuit model describing all kinds of circuit metamaterials. Progr. Electromagn. Res. B 5, 63–76 (2008)

    Article  Google Scholar 

  12. Cui, T.J., Kong, J.A.: Time-domain electromagnetic energy in a frequency-dispersive lefthanded medium. Phys. Rev. B 70, 205106 (2004)

    Article  Google Scholar 

  13. Cui, T.J., Cheng, Q., Lu, W.B., Jiang, Q., Kong, J.A.: Localization of electromagnetic energy using a left-handed medium slab. Phys. Rev. B 71, 045114 (2005)

    Article  Google Scholar 

  14. Falcone, F., Lopetegi, T., Laso, M.A.G., et al.: Babinet principle applied to metasurface and metamaterial design. Phys. Rev. Lett. 93, 197401 (2004)

    Article  Google Scholar 

  15. Fang, N., et al.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 53 (2005)

    Article  Google Scholar 

  16. Grbic, A., Eleftheriadesm, G.V.: Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004)

    Article  Google Scholar 

  17. Huangfu, J., Ran, L.X., Chen, H.S., Zhang, X.M., Chen, K.S., Grzegorczyk, T.M., Kong, J.A.: Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns. App. Phys. Lett. 84, 1537–1539 (2004)

    Article  Google Scholar 

  18. Huangfu, J., Xi, S., Kong, F., Zhang, J., Chen, H., Wang, D., Wu, B.-I., Ran, L., Kong, J.A.: Application of coordinate transformation in bent waveguides. J. Appl. Phys. 104, 014502 (2008)

    Article  Google Scholar 

  19. Hutter, R.G.E.: Beam and wave electronics in microwave tubes. Van Nostrand Reinhold, Princeton, NJ, 220–230 (1960)

    MATH  Google Scholar 

  20. Iyer, A.K., Eleftheriades, G.V.: Negative refractive index metamaterials supporting 2-D waves. IEEE-MTT-S 2, 412–415, Seattle, WA (2002)

    Google Scholar 

  21. Iyer, A.K., Kremer, P.C., Eleftheriades, G.V.: Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Opt. Express 11, 696–708 (2003)

    Article  Google Scholar 

  22. Jiang, W.X., Cui, T.J., Cheng, Q., Chin, J.Y., Yang, X.M., Liu, R., Smith, D.R.: Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Appl. Phys. Lett. 92, 264101 (2008)

    Article  Google Scholar 

  23. Jiang, W.X., Cui, T.J., Ma, H.F., Zhou, X.Y., Cheng, Q.: Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl. Phys. Lett. 92, 261903 (2008)

    Article  Google Scholar 

  24. Jiang, W.X., Cui, T.J., Zhou, X.Y., Yang, X.M., Cheng, Q.: Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials. Phys. Rev. E 78, 066607 (2008)

    Article  Google Scholar 

  25. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  MathSciNet  Google Scholar 

  26. Lin, L., Wang, W., Cui, J., Du, C., Luo, X.: Design of electromagnetic refractor and phase transformer using coordinate transformation theory. Opt. Express 16, 6815 (2008)

    Article  Google Scholar 

  27. Liu, R., Cui, T.J., Huang, D., Zhao, B., Smith, D.R.: Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Phys. Rev. E 76, 026606 (2007)

    Article  Google Scholar 

  28. Liu, R., Ji, C., Mock, J.J., Chin, J.Y., Cui, T.J., Smith, D.R.: Broadband ground-plane cloak. Science 323, 366 (2009)

    Article  Google Scholar 

  29. Ma, H.F., Chen, X., Yang, X.M., Cui, T.J.: High-gain beam scanning antennas realized by gradient index metamaterials. Phys. Rev. E (to be published) (2009)

    Google Scholar 

  30. Ma, H.F., Chen, X., Yang, X.M., Xu, H.S., Cheng, Q., Cui, T.J.: A broadband metamaterial cylindrical lens antenna. Chin. Sci. Bull. (to be published) (2009)

    Google Scholar 

  31. Malyuzhinets, G.D.: A note on the radiation principle. Zhurnal Technicheskoi Fiziki 21, 940–942 (1951) (in Russian)

    Google Scholar 

  32. Mandlshtam, L.: Group velocity in a crystal lattice. Zhurnal Eksperimentalnoii Teoreticheskoi Fiziki 15, 476–478 (1945) (in Russian. English translation in Sov. Phys. ZETF)

    Google Scholar 

  33. Oliner, A.A.: A periodic-structure negative-refractive-index medium without resonant elements. IEEE-AP-S Digest, San Antonio, TX, p. 41 (2002)

    Google Scholar 

  34. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  35. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Micro. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  36. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  Google Scholar 

  37. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  Google Scholar 

  38. Rahm, M., Schurig, D., Roberts, D.A., Cummer, S.A., Smith, D.R., Pendry, J.B.: Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photo. Nano. Fund. Appl. 6, 87 (2008).

    Article  Google Scholar 

  39. Schurig, D., Mock, J.J., Justice, B.J., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  Google Scholar 

  40. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  41. Silin, R.A.: Waveguiding properties of two-dimensional periodical slow-wave systems. Voprosy Radioelektroniki. Elektronika 4, 11–33 (1959) (in Russian)

    MathSciNet  Google Scholar 

  42. Silin, R.A., Sazonov, V.P.: Slow-wave structures. Moscow, Soviet Radio (1966) (in Russian)

    Google Scholar 

  43. Simovski, C.R., Belov, P.A., He, S.: Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators. IEEE Trans. Antennas Propagat. 51, 2582 (2003)

    Article  Google Scholar 

  44. Sivukhin, D.V.: The energy of electromagnetic waves in dispersive media. Opt. Spektrosk. 3, 308–312 (1957)

    Google Scholar 

  45. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  46. Smith, D.R., Schurig, D., Rosenbluth, M., Schultz, S., Ramakrishna, S.A., Pendry, J.B.: Limitations on subdiffraction imaging with a negative refractive index slab. App. Phys. Lett. 82, 1506 (2003)

    Google Scholar 

  47. Smith, D.R., Mock, J.J., Starr, A.F., Schurig, D.: Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005)

    Article  Google Scholar 

  48. Smith, D.R., Pendry, J.B.: Homogenization of metamaterials by field averaging. J. Opt. Soc. Amer. B 23, 391 (2006)

    Article  Google Scholar 

  49. Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)

    Article  Google Scholar 

  50. Tretyakov, S.A.: Research on negative refraction and backward-wave media: A historical perspective. Negative refraction: revisiting electromagnetics from microwaves to optics, EPFL Latsis Symposium, Lausanne (2005)

    Google Scholar 

  51. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ? and μ. Sov. Phys. Usp. 10, 509 (1968)

    Article  Google Scholar 

  52. Weiglhofer, W.S., Lakhtakia, A.: Introduction to complex mediums for optics and electromagnetics. SPIE Press, Bellingham, WA, USA (2003)

    Book  Google Scholar 

  53. http://en.wikipedia.org/wiki/Metamaterial

Download references

Acknowledgments

This work was supported in part by a major project of the National Science Foundation of China under Grant Nos. 60990320 and 60990324, the Natural Science Foundation of Jiangsu Province under Grant No. BK2008031, the National Basic Research Program (973) of China under Grant No. 2004CB719802, the National Science Foundation of China under Grant Nos. 60871016, 60671015, and 60621002, and in part by the 111 Project under Grant No. 111-2-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie Jun Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cui, T.J., Liu, R., Smith, D.R. (2010). Introduction to Metamaterials. In: Cui, T., Smith, D., Liu, R. (eds) Metamaterials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0573-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0573-4_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0572-7

  • Online ISBN: 978-1-4419-0573-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics