Skip to main content

Determination of Myocardial Material Properties by Optimization

  • Chapter
  • First Online:
Computational Cardiovascular Mechanics

Abstract

The previous chapter includes a computationally efficient strain energy function for describing the three-dimensional relationship between stress and strain in passive myocardial material properties, the material parameters of which were formally optimized using left ventricular pressure and epicardial strain measurements in a cylindrical model. Results from such a model are confined at best to the equatorial region of the left ventricle. A finite element model of the entire left ventricle is required to determine regional variations in myocardial material properties. The most important or at least interesting finding from such a study is that myocardial contractility in the (border zone) region adjacent to a myocardial infarction is much less than (typically only half) that in regions remote from the myocardial infarction. This finding has been confirmed with active stress measurements in skinned muscle fibers dissected from these regions. This chapter is concerned with brief descriptions of the studies from our laboratory that have led up to our current knowledge concerning regional variations of myocardial contractility in infarcted left ventricles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bovendeerd PH, Arts T, Delhaas T, Huyghe JM, van Campen DH, Reneman RS. Regional wall mechanics in the ischemic left ventricle: numerical modeling and dog experiments. Am J Physiol Heart Circ Physiol. 1996;270:H398–H410.

    Google Scholar 

  2. Guccione JM, McCulloch AD, Waldman LK. Passive material properties of intact ventricular myocardium determined from a cylindrical model. ASME J Biomech Eng. 1991;113:42–55.

    Article  Google Scholar 

  3. Omens JH, MacKenna DA, McCulloch AD. Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J Biomech. 1993;26:665–676.

    Article  Google Scholar 

  4. Usyk TP, Mazhari R, McCulloch AD. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elasticity. 2000;61:143–164.

    Article  MATH  Google Scholar 

  5. Vetter FJ, McCulloch AD. Three-dimensional stress and strain in passive rabbit left ventricle: a model study. Ann Biomed Eng. 2000;28:781–792.

    Article  Google Scholar 

  6. Denney TS Jr, Gerber BL, Yan L. Unsupervised reconstruction of a three-dimensional left ventricular strain from parallel tagged cardiac images. Magn Reson Med. 2003;49:743–754.

    Article  Google Scholar 

  7. Ozturk C, McVeigh ER. Four-dimensional B-spline based motion analysis of tagged MR images: introduction and in vivo validation. Phys Med Biol. 2000;45(6):1683–1702.

    Article  Google Scholar 

  8. Moulton MJ, Creswell LL, Downing SW, Actis RL, Szabo BA, Pasque MK. Myocardial material property determination in the in vivo heart using magnetic resonance imaging. Int J Card Imaging. 1996;12:153–167.

    Article  Google Scholar 

  9. Okamoto RJ, Moulton MJ, Peterson SJ, Li D, Pasque MK, Guccione JM. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall. J Biomech Eng. 2000 Oct;122(5):479–487.

    Article  Google Scholar 

  10. Costa KD, Hunter PJ, Rogers JR, Guccione JM, Waldman LK, McCulloch AD. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part I—Cylindrical and spherical coordinates. ASME J Biomech Eng. 1996;118: 452–463.

    Article  Google Scholar 

  11. Guccione JM, Costa KD, McCulloch AD. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J Biomech. 1995;28:1167–1177.

    Article  Google Scholar 

  12. Moulton MJ, Creswell LL, Actis RL, Myers KW, Vannier MW, Szabo BA, Pasque MK. An inverse approach to determining myocardial material properties. J Biomech. 1995;28:935–948.

    Article  Google Scholar 

  13. Dang AB, Guccione JM, Mishell JM, Zhang P, Wallace AW, Gorman RC, Gorman JH 3rd, Ratcliffe MB. Akinetic myocardial infarcts must contain contracting myocytes: finite-element model study. Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1844–H1850.

    Article  Google Scholar 

  14. Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, Pasque MK. Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg. 2001 Feb;71(2):654–662.

    Article  Google Scholar 

  15. Moulton MJ, Downing SW, Creswell LL, Fishman DS, Amsterdam DM, Szabo BA, Cox JL, Pasque MK. Mechanical dysfunction in the border zone of an ovine model of left ventricular aneurysm. Ann Thorac Surg. 1995;60:986–997.

    Article  Google Scholar 

  16. Bowen FW, Hattori T, Narula N, Salgo IS, Plappert T, Sutton MG, Edmunds LH Jr. Reappearance of myocytes in ovine infarcts produced by six hours of complete ischemia followed by reperfusion. Ann Thorac Surg. 2001;71:1845–1855.

    Article  Google Scholar 

  17. Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM. MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H692–H700.

    Article  Google Scholar 

  18. Moonly SM. Experimental and computational analysis of left ventricular aneurysm mechanics (PhD thesis). San Francisco, CA: University of California, San Francisco with University of California, Berkeley, 2003.

    Google Scholar 

  19. Walker JC, Guccione JM, Jiang Y, Zhang P, Wallace AW, Hsu EW, Ratcliffe MB. Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep. J Thorac Cardiovasc Surg. 2005;129:382–390.

    Article  Google Scholar 

  20. Guccione JM, Beitler JR, Moonly SM, Walker JC, Zhang P, Wallace AW, Saloner DA, Ratcliffe MB. The effect of LV aneurysm plication on end-systolic strain in the sheep: a 3-D MR tagging study. Biomedical Engineering Society Annual Fall Meeting. Nashville, TN, 2003.

    Google Scholar 

  21. Moustakidis P, Maniar HS, Cupps BP, Absi T, Zheng J, Guccione JM, Sundt TM, Pasque MK. Altered left ventricular geometry changes the border zone temporal distribution of stress in an experimental model of left ventricular aneurysm: a finite element model study. Circulation. 2002;106:I168–I175.

    Google Scholar 

  22. Costa KD, Hunter PJ, Wayne JS, Waldman LK, Guccione JM, McCulloch AD. A three-dimensional finite element method for large elastic deformations of ventricular myocardium. II. Prolate spheroidal coordinates. J Biomech Eng. 1996;118:464–472.

    Article  Google Scholar 

  23. Lin DH, Yin FC. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J Biomech Eng. 1998;120:504–517.

    Article  Google Scholar 

  24. Sun K, Stander N, Jhun C-S, Zhang Z, Suzuki T, Wallace AW, Saloner DA, Einstein DR, Ratcliffe MB, Guccione JM. A computationally efficient formal optimization method for estimating regional variations of in-vivo myocardial contractility in infarcted left ventricles. J Biomech Eng. 2009; 131:111001.

    Google Scholar 

  25. Guccione JM, Walker JC, Beitler JR, Moonly SM, Zhang P, Guttman MA, Ozturk C, McVeigh ER, Wallace AW, Saloner DA, Ratcliffe MB. The effect of anteroapical aneurysm plication on end-systolic three-dimensional strain in the sheep: a magnetic resonance imaging tagging study. J Thorac Cardiovasc Surg. 2006;131(3):579–586, e3.

    Article  Google Scholar 

  26. Markovitz LJ, Savage EB, Ratcliffe MB, Bavaria JE, Kreiner G, Iozzo RV, Hargrove WC 3rd, Bogen DK, Edmunds LH Jr. Large animal model of left ventricular aneurysm. Ann Thorac Surg. 1989;48(6):838–845.

    Article  Google Scholar 

  27. Guttman MA, Zerhouni EA, McVeigh ER. Analysis and visualization of cardiac function from MR images. IEEE Comp Graph Appl. 1997;17(1):30–38.

    Article  Google Scholar 

  28. Omens JH, May KD, McCulloch AD. Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am J Physiol. 1991;261(3 Pt 2):H918–H928.

    Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Whitaker Foundation (Dr. Guccione) and National Institutes of Health grant 5R01 HL077921 (Dr. Guccione).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius M. Guccione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wenk, J.F., Jhun, CS., Sun, K., Stander, N., Guccione, J.M. (2010). Determination of Myocardial Material Properties by Optimization. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics