Skip to main content

Bifurcations and state changes in the human alpha rhythm: Theory and experiment

  • Chapter
  • First Online:
Book cover Modeling Phase Transitions in the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 4))

Abstract

Despite many decades investigating scalp recordable 8–13-Hz (alpha) electroencephalographic activity, no consensus has yet emerged regarding its physiological origins nor its functional role in cognition. Here we outline a detailed, physiologically meaningful, theory for the genesis of this rhythm that may provide important clues to its functional role. In particular we find that electroencephalographically plausible model dynamics, obtained with physiological admissible parameterisations, reveals a cortex perched on the brink of stability, which when perturbed gives rise to a range of unanticipated complex dynamics that include 40-Hz (gamma) activity. Preliminary experimental evidence, involving the detection of weak nonlinearity in resting EEG using an extension of the well-known surrogate data method, suggests that nonlinear (deterministic) dynamics are more likely to be associated with weakly damped alpha activity. Thus rather than the “alpha rhythm” being an idling rhythm it may be more profitable to conceive it as a readiness rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Underlined symbols denote functions spatially averaged in the following manner.

  2. 2.

    In this context, “alpha” refers to a particular single-parameter function, the so-called alpha function, often used in dendritic cable theory to model the time-course of a single postsynaptic potential.

References

  1. Adrian, E.D., Matthews, B.H.C.: The Berger rhythm, potential changes from the occipital lobe in man. Brain 57, 355–385 (1934), doi:10.1093/brain/57.4.355

    Article  Google Scholar 

  2. Andersen, P., Andersson, S.A.: Physiological basis of the alpha rhythm. Appelton-Century-Crofts, New York Y(1968)

    Google Scholar 

  3. Arieli, A., Sterkin, A., Grinvald, A., Aertsen, A.: Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996), doi:10.1126/science.273.5283.1868

    Article  CAS  PubMed  Google Scholar 

  4. Başar, E., Schürmann, M., Başar-Eroglu, C., Karakaş, S.: Alpha oscillations in brain functioning: An integrative theory. Int. J. Psychophysiol. 26, 5–29 (1997), doi:10.1016/S0167-8760(97)00753-8

    Article  PubMed  Google Scholar 

  5. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987), doi:10.1103/PhysRevLett.59.381

    Article  PubMed  Google Scholar 

  6. Benshalom, G., White, E.L.: Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex. J. Comp. Neurol. 253, 303–314 (1986), doi:10.1002/cne.902530303

    Article  CAS  PubMed  Google Scholar 

  7. Bojak, I., Liley, D.T.J.: Modeling the effects of anesthesia on the electroencephalogram. Phys. Rev. E 71, 041902 (2005), doi:10.1103/PhysRevE.71.041902

    CAS  Google Scholar 

  8. Bojak, I., Liley, D.T.J.: Self-organized 40-Hz synchronization in a physiological theory of EEG. Neurocomp. 70, 2085–2090 (2007), doi:10.1016/j.neucom.2006.10.087

    Article  Google Scholar 

  9. Bojak, I., Liley, D.T.J., Cadusch, P.J., Cheng, K.: Electrorhythmogenesis and anaesthesia in a physiological mean field theory. Neurocomp. 58-60, 1197–1202 (2004), doi:10.1016/j.neucom.2004.01.185

    Article  Google Scholar 

  10. Braitenberg, V., Schüz, A.: Cortex: Statistics and geometry of neuronal connectivity. Springer, New York, 2nd edn. (1998)

    Google Scholar 

  11. Bressler, S.L., Kelso, J.A.S.: Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36 (2001), doi:10.1016/S1364-6613(00)01564-3

    Article  PubMed  Google Scholar 

  12. Bruno, R.M., Sakmann, B.: Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622–1627 (2006), doi:10.1126/science.1124593

    Article  CAS  PubMed  Google Scholar 

  13. Chatila, M., Milleret, C., Buser, P., Rougeul, A.: A 10 Hz “alpha-like” rhythm in the visual cortex of the waking cat. Electroencephalogr. Clin. Neurophysiol. 83, 217–222 (1992), doi:10.1016/0013-4694(92)90147-A

    Article  CAS  PubMed  Google Scholar 

  14. Chatila, M., Milleret, C., Rougeul, A., Buser, P.: Alpha rhythm in the cat thalamus. C. R. Acad. Sci. III, Sci. Vie 316, 51–58 (1993)

    CAS  Google Scholar 

  15. Chatrian, G.E., Bergamini, L., Dondey, M., Klass, D.W., Lennox-Buchthal, M.A., Petersén, I.: A glossary of terms most commonly used by clinical electroencephalographers. In: International Federation of Societies for Electroencephalography and Clinical Neurophysiology (ed.), Recommendations for the practice of clinical neurophysiology, Elsevier, Amsterdam (1983)

    Google Scholar 

  16. Ciulla, C., Takeda, T., Endo, H.: MEG characterization of spontaneous alpha rhythm in the human brain. Brain Topogr. 11, 211–222 (1999), doi:10.1023/A:1022233828999

    Article  CAS  PubMed  Google Scholar 

  17. Coombes, S., Venkov, N.A., Shiau, L.J., Bojak, I., Liley, D.T.J., Laing, C.R.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76, 051901 (2007), doi:10.1103/PhysRevE.76.051901

    Article  CAS  Google Scholar 

  18. Dafilis, M.P., Liley, D.T.J., Cadusch, P.J.: Robust chaos in a model of the electroencephalogram: Implications for brain dynamics. Chaos 11, 474–478 (2001), doi:10.1063/1.1394193

    Article  PubMed  Google Scholar 

  19. Fisahn, A., Pike, F.G., Buhl, E.H., Paulsen, O.: Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998), doi:10.1038/28179

    Article  CAS  PubMed  Google Scholar 

  20. Foster, B.L., Bojak, I., Liley, D.T.J.: Population based models of cortical drug response – insights from anaesthesia. Cognitive Neurodyn. 2 (2008), doi:10.1007/s11571-008-9063-z

    Google Scholar 

  21. Freeman, W.J., Holmes, M.D.: Metastability, instability, and state transition in neocortex. Neural Netw. 18, 497–504 (2005), doi:10.1016/j.neunet.2005.06.014

    Article  PubMed  Google Scholar 

  22. Freeman, W.J., Rogers, L.J., Holmes, M.D., Silbergeld, D.L.: Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods 95, 111–121 (2000), doi:10.1016/S0165-0270(99)00160-0

    Article  CAS  PubMed  Google Scholar 

  23. Friston, K.J.: Transients, metastability, and neuronal dynamics. NeuroImage 5, 164–171 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Friston, K.J.: The labile brain. I. Neuronal transients and nonlinear coupling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 215–236 (2000), doi:10.1006/nimg.1997.0259

    Article  CAS  Google Scholar 

  25. Gastaut, H.: Étude électrocorticographique de la réativité des rhythmes rolandiques. Rev. Neurol. (Paris) 87, 176–182 (1952)

    CAS  Google Scholar 

  26. Gautama, T., Mandic, D.P., Van Hulle, M.M.: Indications of nonlinear structures in brain electrical activity. Phys. Rev. E 67, 046204 (2003), doi:10.1103/PhysRevE.67.046204

    Article  Google Scholar 

  27. Gloor, P.: Hans Berger on the electroencephalogram of man. Electroencephalogr. Clin. Neurophysiol. S28, 350 (1969)

    Google Scholar 

  28. Grillon, C., Buchsbaum, M.S.: Computed EEG topography of response to visual and auditory stimuli. Electroencephalogr. Clin. Neurophysiol. 63, 42–53 (1986), doi:10.1016/0013-4694(86)90061-1

    Article  CAS  PubMed  Google Scholar 

  29. Hebb, D.O.: The organization of behavior. Wiley, New York (1949)

    Google Scholar 

  30. Hughes, S.W., Crunelli, V.: Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11, 357–372 (2005), doi:10.1177/1073858405277450

    Article  PubMed  Google Scholar 

  31. Hughes, S.W., Crunelli, V.: Just a phase they’re going through: the complex interaction of intrinsic high-threshold bursting and gap junctions in the generation of thalamic alpha and theta rhythms. Int. J. Psychophysiol. 64, 3–17 (2007), doi:10.1016/j.ijpsycho.2006.08.004

    Article  PubMed  Google Scholar 

  32. International Federation of Societies for Electroencephalography and Clinical Neurophysiology: A glossary of terms commonly used by clinical electroencephalographers. Electroencephalogr. Clin. Neurophysiol. 37, 538–548 (1974), doi:10.1016/0013-4694(74)90099-6

    Google Scholar 

  33. Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996), doi:10.1103/PhysRevLett.77.960

    Article  CAS  PubMed  Google Scholar 

  34. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, New York, 2nd edn. (2003)

    Book  Google Scholar 

  35. Kelso, J.A.S.: Dynamic patterns: The self-organization of brain and behavior. The MIT Press (1995)

    Google Scholar 

  36. Kennedy, J.L., Gottsdanker, R.M., Armington, J.C., Gray, F.E.: A new electroencephalogram associated with thinking. Science 108, 527–529 (1948), doi:10.1126/science.108.2811.527

    Article  CAS  PubMed  Google Scholar 

  37. Kristiansen, K., Courtois, G.: Rhythmic electrical activity from isolated cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 1, 265–272 (1949)

    CAS  Google Scholar 

  38. Liley, D.T.J., Alexander, D.M., Wright, J.J., Aldous, M.D.: Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. Network: Comput. Neural Syst. 10, 79–92 (1999), doi:10.1088/0954-898X/10/1/005

    Article  CAS  Google Scholar 

  39. Liley, D.T.J., Bojak, I.: Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. J. Clin. Neurophsiol. 22, 300–313 (2005)

    CAS  Google Scholar 

  40. Liley, D.T.J., Cadusch, P.J., Dafilis, M.P.: A spatially continuous mean field theory of electrocortical activity. Network: Comput. Neural Syst. 13, 67–113 (2002), doi:10.1088/0954-898X/13/1/303, see also [41]

    Google Scholar 

  41. Liley, D.T.J., Cadusch, P.J., Dafilis, M.P.: Corrigendum: A spatially continuous mean field theory of electrocortical activity. Network: Comput. Neural Syst. 14, 369 (2003), doi:10.1088/0954-898X/14/2/601

    Article  Google Scholar 

  42. Liley, D.T.J., Cadusch, P.J., Gray, M., Nathan, P.J.: Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity. Phys. Rev. E 68, 051906 (2003), doi:10.1103/PhysRevE.68.051906

    Google Scholar 

  43. Liley, D.T.J., Cadusch, P.J., Wright, J.J.: A continuum theory of electro-cortical activity. Neurocomp. 26-27, 795–800 (1999), doi:10.1016/S0925-2312(98)00149-0

    Article  Google Scholar 

  44. Llinás, R.R.: The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242, 1654–1664 (1988), doi:10.1126/science.3059497

    Article  PubMed  Google Scholar 

  45. Lopes da Silva, F.H.: Dynamics of EEGs as signals of neuronal populations: Models and theoretical considerations. In: [51], pp. 85–106 (2005)

    Google Scholar 

  46. Lopes da Silva, F.H., Blanes, W., Kalitzin, S.N., Parra, J., Suffczyński, P., Velis, D.N.: Dynamical diseases of brain systems: Different routes to epileptic seizures. IEEE Trans. Biomed. Eng. 50, 540–548 (2003), doi:10.1109/TBME.2003.810703

    Article  PubMed  Google Scholar 

  47. Lopes da Silva, F.H., van Lierop, T.H.M.T., Schrijer, C.F., van Leeuwen, W.S.: Essential differences between alpha rhythms and barbiturate spindles: Spectra and thalamo-cortical coherences. Electroencephalogr. Clin. Neurophysiol. 35, 641–645 (1973), doi:10.1016/0013-4694(73)90217-4

    Article  Google Scholar 

  48. Lopes da Silva, F.H., van Lierop, T.H.M.T., Schrijer, C.F., van Leeuwen, W.S.: Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalogr. Clin. Neurophysiol. 35, 627–639 (1973), doi:10.1016/0013-4694(73)90216-2

    Article  Google Scholar 

  49. Narici, L., Forss, N., Jousmäki, V., Peresson, M., Hari, R.: Evidence for a 7- to 9-Hz “sigma” rhythm in the human SII cortex. NeuroImage 13, 662–668 (2001)

    Article  CAS  PubMed  Google Scholar 

  50. Niedermeyer, E.: The normal EEG of the waking adult. In: [51], pp. 167–192 (2005)

    Google Scholar 

  51. Niedermeyer, E., Lopes da Silva, F.H. (eds.): Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams Wilkins, Philadelphia, 5th edn. (2005)

    Google Scholar 

  52. Nikulin, V.V., Brismar, T.: Phase synchronization between alpha and beta oscillations in the human electroencephalogram. Neuroscience 137, 647–657 (2006), doi:10.1016/j.neuroscience.2005.10.031

    Article  CAS  PubMed  Google Scholar 

  53. Novikov, E., Novikov, A., Shannahoff-Khalsa, D.S., Schwartz, B., Wright, J.: Scale-similar activity in the brain. Phys. Rev. E 56, R2387–R2389 (1997), doi:10.1103/PhysRevE.56.R2387

    Article  Google Scholar 

  54. Nunez, P.L.: Electric fields of the brain: The neurophysics of EEG. Oxford University Press, New York, 1st edn. (1981)

    Google Scholar 

  55. Nunez, P.L., Wingeier, B.M., Silberstein, R.B.: Spatial-temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum. Brain. Mapp. 13, 125–164 (2001), doi:10.1002/hbm.1030

    Article  CAS  PubMed  Google Scholar 

  56. Oldeman, B.E., Krauskopf, B., Champneys, A.R.: Death of period doublings: Locating the homoclinic doubling cascade. Physica D 146, 100–120 (2000), doi:10.1016/S0167-2789(00)00133-0

    Article  Google Scholar 

  57. Peters, A., Payne, B.R.: Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3, 69–78 (1993), doi:10.1093/cercor/3.1.69

    Article  CAS  PubMed  Google Scholar 

  58. Peters, A., Payne, B.R., Budd, J.: A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb. Cortex 4, 215–229 (1994), doi:10.1093/cercor/4.3.215

    Article  CAS  PubMed  Google Scholar 

  59. Pfurtscheller, G.: Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr. Clin. Neurophysiol. 83, 62–69 (1992), doi:10.1016/0013-4694(92)90133-3

    Article  CAS  PubMed  Google Scholar 

  60. Pfurtscheller, G., Lopes da Silva, F.H.: EEG event-related desynchronization (ERD) and event-related synchronization (ERS). In: [51], pp. 1003–1016 (2005)

    Google Scholar 

  61. Pfurtscheller, G., Neuper, C., Krausz, G.: Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin. Neurophysiol. 111, 1873–1879 (2000), doi:10.1016/S1388-2457(00)00428-4

    Article  CAS  PubMed  Google Scholar 

  62. Pritchard, W.S.: The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int. J. Neurosci. 66, 119–129 (1992)

    Article  CAS  PubMed  Google Scholar 

  63. Rabinovich, M.I., Huerta, R., Laurent, G.: Neuroscience. Transient dynamics for neural processing. Science 321, 48–50 (2008), doi:10.1126/science.1155564

    Article  CAS  PubMed  Google Scholar 

  64. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4, e1000072 (2008), doi:10.1371/journal.pcbi.1000072

    Article  PubMed  Google Scholar 

  65. Robinson, P.A.: Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys. Rev. E 73, 041904 (2006), doi:10.1103/PhysRevE.73.041904

    Article  CAS  Google Scholar 

  66. Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997), doi:10.1103/PhysRevE.56.826

    Article  CAS  Google Scholar 

  67. Schanze, T., Eckhorn, R.: Phase correlation among rhythms present at different frequencies: Spectral methods, application to microelectrode recordings from visual cortex and functional implications. Int. J. Psychophysiol. 26, 171–189 (1997), doi:10.1016/S0167-8760(97)00763-0

    Article  CAS  PubMed  Google Scholar 

  68. Schreiber, T., Schmitz, A.: Discrimination power of measures for nonlinearity in a time series. Phys. Rev. E 55, 5543–5547 (1997), doi:10.1103/PhysRevE.55.5443

    Article  Google Scholar 

  69. Schreiber, T., Schmitz, A.: Surrogate time series. Physica D 142, 346–382 (2000), doi:10.1016/S0167-2789(00)00043-9

    Article  Google Scholar 

  70. Shaw, J.C.: The brain’s alpha rhythms and the mind. Elsevier Sciences B. V., Amsterdam (2003)

    Google Scholar 

  71. Silva, L.R., Amitai, Y., Connors, B.W.: Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435 (1991), doi:10.1126/science.1824881

    Article  CAS  PubMed  Google Scholar 

  72. Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005), doi:10.1016/j.clinph.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  73. Stam, C.J., Pijn, J.P.M., Suffczyński, P., Lopes da Silva, F.H.: Dynamics of the human alpha rhythm: Evidence for nonlinearity? Clin. Neurophysiol. 110, 1801–1813 (1999), doi:10.1016/S1388-2457(99)00099-1

    Article  CAS  Google Scholar 

  74. Steriade, M.: Cellular substrates of brain rhythms. In: [51], pp. 31–83 (2005)

    Google Scholar 

  75. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J.: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60, 7299–7311 (1999)

    Article  CAS  Google Scholar 

  76. Tiesinga, P.H.E., Fellous, J.M., José, J.V., Sejnowski, T.J.: Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus 11, 251–274 (2001), doi:10.1002/hipo.1041

    Article  CAS  PubMed  Google Scholar 

  77. Tiihonen, J., Hari, R., Kajola, M., Karhu, J., Ahlfors, S., Tissari, S.: Magnetoencephalographic 10-Hz rhythm from the human auditory cortex. Neurosci. Lett. 129, 303–305 (1991), doi:10.1016/0304-3940(91)90486-D

    Article  CAS  PubMed  Google Scholar 

  78. Tsuda, I.: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–810 (2001)

    Article  CAS  PubMed  Google Scholar 

  79. Uhl, C., Friedrich, R.: Spatiotemporal modeling based on dynamical systems theory. In: C. Uhl (ed.), Analysis of Neurophysiological Brain Functioning, pp. 274–306, Springer-Verlag, Berlin (1999)

    Google Scholar 

  80. van Rotterdam, A., Lopes da Silva, F.H., van den Ende, J., Viergever, M.A., Hermans, A.J.: A model of the spatialtemporal characteristics of the alpha rhythm. Bull. Math. Biol. 44, 283–305 (1982)

    Article  PubMed  Google Scholar 

  81. van Veen, L., Liley, D.T.J.: Chaos via Shilnikov’s saddle–node bifurcation in a theory of the electroencephalogram. Phys. Rev. Lett. 97, 208101 (2006), doi:10.1103/PhysRevLett.97.208101

    Article  PubMed  Google Scholar 

  82. Walter, W.G., Walter, V.J.: The electrical activity of the brain. Ann. Rev. Physiol. 11, 199–230 (1949), doi:10.1146/annurev.ph.11.030149.001215

    Article  CAS  Google Scholar 

  83. Williamson, S.J., Kaufman, L.: Advances in neuromagnetic instrumentation and studies of spontaneous brain activity. Brain Topogr. 2, 129–139 (1989), doi:10.1007/BF01128850

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.T.J. Liley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liley, D., Bojak, I., Dafilis, M., van Veen, L., Frascoli, F., Foster, B. (2010). Bifurcations and state changes in the human alpha rhythm: Theory and experiment. In: Steyn-Ross, D., Steyn-Ross, M. (eds) Modeling Phase Transitions in the Brain. Springer Series in Computational Neuroscience, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0796-7_6

Download citation

Publish with us

Policies and ethics