Skip to main content

Microbiological Spoilage of Fruits and Vegetables

  • Chapter
  • First Online:
Compendium of the Microbiological Spoilage of Foods and Beverages

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey, S. D., Heaton, E. K., Golden, D. A., & Beuchat, L. B. (1988). Microbiological and sensory quality changes in unwrapped and wrapped sliced watermelon. Journal of Food Protection, 51, 531ā€“533.

    Google ScholarĀ 

  • Acevedo, L., Mendoza, C., & Oyon, R. (2001). Total fecal coliforms, some enterobacterial Staphylococcus spp. and moulds in salads for hot dogs sold in Maracay. Venezuela Archivos Latinoamericanos de NutriciĆ³n. 51, 366ā€“370.

    CASĀ  Google ScholarĀ 

  • Adams, M. R., & Nicolaides, L. (1997). Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 8, 227ā€“239.

    ArticleĀ  Google ScholarĀ 

  • Agrios, G. A. (1997). Plant pathology (4th ed.). San Diego, CA: Academic Press.

    Google ScholarĀ 

  • Ahvennainen, R. (1996). New approaches in improving the shelf life of minimally processed fruit and vegetables. Trends Food Science and Technology, 7, 179ā€“187.

    ArticleĀ  Google ScholarĀ 

  • Allende, A., Aguayo, E., & Artes, F. (2004). Microbial and sensory quality of commercial fresh processed red lettuce throughout the production chain and shelf life. International Journal of Food Microbiology, 91, 109ā€“117.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Allende, A., Jacxsens, L., Devlieghere, F., Debevere, J., & Artes, F. (2002). Effect of superatmospheric oxygen packaging on sensorial quality, spoilage, and Listeria monocytogenes and Aeromonas caviae growth in fresh processed mixed salads. Journal of Food Protection, 65, 1565ā€“1573.

    Google ScholarĀ 

  • Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review Phytopathology, 38, 145ā€“180.

    ArticleĀ  Google ScholarĀ 

  • Artes, F., & Martinez, J. (1996). Influence of packaging treatments on the keeping quality of Salinas lettuce. Lebensmittel-Wissenschaft Technology, 29, 664ā€“668.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Babic, I., Hilbert, G., Nguyen-the, C., & Guiraud, J. (1992). The yeast flora of stored ready-to-use carrots and their role in spoilage. International Journal of Food Science and Technology, 27, 473ā€“484.

    ArticleĀ  Google ScholarĀ 

  • Barras, F., van Gijsegem, F., & Chatterjee, A. K. (1994). Extracellular enzymes and pathogenesis of soft-rot erwinia. Annual Review Phytopathology 32, 201ā€“234.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barriga, M. I., Richie, D. F., Willemot, C., & Simard, R. E. (1991). Microbial changes in shredded iceberg lettuce stored under controlled atmospheres. Journal of Food Science, 56, 1586ā€“1588, 1599.

    ArticleĀ  Google ScholarĀ 

  • Barry-Ryan, C., & Oā€™Beirne, D. (2000). Effects of peeling methods on the quality of ready-to-use carrot slices. Journal of Food Science Technology, 35, 243ā€“254.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bartz, J. A. (2006). Internalization and Infiltration. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.). Microbiology of fresh fruits and vegetables (pp. 75ā€“94). New York: Taylor and Francis Group.

    Google ScholarĀ 

  • BCGA. (1998). The safe application of oxygen enriched atmospheres when packaging food. British compressed gases association (p. 39) Hampshire, UK.

    Google ScholarĀ 

  • Bell, T. A., & Etchells J. L. (1952). Sugar and acid tolerance of spoilage yeasts from sweet-cucumber pickles. Food Technology 6, 468ā€“472.

    CASĀ  Google ScholarĀ 

  • Bell, T. A., & Etchells, J. L. (1956). Pectin hydrolysis by certain salt-tolerant yeasts. Applied Microbiology, 4, 196ā€“201.

    CASĀ  Google ScholarĀ 

  • Bell, T. A., Etchells, J. L., & Costilow, R. N. (1958). Softening enzyme activity of cucumber flowers from northern production areas. Food Research, 23, 198ā€“204.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bolin, H. R., & Huxsoll, C. C. (1991). Control of minimally processed carrot (Daucus carota) surface discoloration caused by abrasion peeling. Journal of Food Science, 56, 416ā€“418.

    ArticleĀ  Google ScholarĀ 

  • Bolin, H. R., Stafford, A. E., King Jr. A. D., & Huxsoll, C. C. (1977). Factors affecting the storage stability of shredded lettuce. Journal of Food Science, 42, 1319ā€“1321.

    ArticleĀ  Google ScholarĀ 

  • Boyette, M. D., Ritchie, D. F., Carballo, S. J., Blankenship, S. M., & Sanders, D. C. (1993). Chlorination and postharvest disease control. Horticultural Technology, 3, 395ā€“400.

    Google ScholarĀ 

  • Brackett, R. E. (1994). Microbiological spoilage and pathogens in minimally processed refrigerated fruits and vegetables. In R. C. Wiley (Ed.), Minimally processed refrigerated fruits and vegetables (pp. 269ā€“312). New York: Chapman & Hall.

    ChapterĀ  Google ScholarĀ 

  • Breidt, F., Hayes, J. S., & McFeeters, R. F. (2004). The independent effects of acetic acid and pH on the survival of Escherichia coli O157:H7 in simulated acidified pickle products. Journal of Food Protection, 67, 12ā€“18.

    CASĀ  Google ScholarĀ 

  • Breidt, Jr. F., Hayes, J. S., Osborne, J. A., & McFeeters, R. F. (2005). Determination of 5-log pathogen reduction times for heat-processed, acidified foods. Journal of Food Protection, 68, 305ā€“310.

    Google ScholarĀ 

  • Brocklehurst, T. F., & Lund, B. M. (1981). Properties of pseudomonads causing spoilage of vegetables stored at low temperature. Journal of Applied Bacteriology, 50, 259ā€“266.

    ArticleĀ  Google ScholarĀ 

  • Brocklehurst, T. F., Zaman-Wong, C. M., & Lund, B. M. (1987). A note on the microbiology of retail packs of prepared salad vegetables. Journal of Applied Bacteriology, 63, 409ā€“415

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brudzinski, L., & Harrison, M. A. (1998). Influence of incubation conditions on survival and acid tolerance response of Escherichia coli O157:H7 and non-O157:H7 isolates exposed to acetic acid. Journal of Food Protection, 61, 542ā€“546.

    CASĀ  Google ScholarĀ 

  • Brul, S., & Coote, P. (1999). Preservative agents in foods. Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50, 1ā€“17.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Buick, R. K., & Damoglou, P. A. (1987). The effect of vacuum-packaging on the microbial spoilage and shelf-life of ā€œready-to-useā€, sliced carrots. Journal of Science Food Agriculture, 38, 167ā€“175.

    ArticleĀ  Google ScholarĀ 

  • Bulgarelli, M. A., & Brackett, R. E. (1991). The importance of fungi in vegetables. In D. K. Arora, K. G., Mukerji, & E. H., Marth (Eds.), Handbook of applied mycology, Vol. 3: Foods and feeds (pp. 179ā€“199). New York: Marcel Dekker.

    Google ScholarĀ 

  • Cantwell, M. I., & Suslow, T. V. (2002). Postharvest handling systemsā€‰: Fresh-cut fruits and vegetables. In A. A. Kader (Ed.), Postharvest technology of horticultural ccrops (pp. 445ā€“463). Davis CA: University of California.

    Google ScholarĀ 

  • Carlin, F., & Nguyen-the, C. (1989). Bacteriologie des produits de quatrieme gamme, Reviews Genetics Froid, 79, 83ā€“91.

    Google ScholarĀ 

  • Carlin, F., Nguyen-the, C., Cudennec, P., & Reich, M. (1989). Microbiological spoilage of fresh, Ā«ā€‰ready-to-useā€‰Ā» grated carrots. Sciences des Aliments,ā€‰9, 371ā€“386.

    Google ScholarĀ 

  • Carlin, F., Nguyen-the, C., Cudennec, P., & Reich, M. (1990). Effects of controlled atmospheres on microbial spoilage, electrolyte leakage and sugar content of fresh ā€œready-to-useā€ grated carrots. International Journal of Food Science Technology, 25, 110ā€“119.

    ArticleĀ  Google ScholarĀ 

  • Carlin, F., Nguyen-the, C., Abreu Da Silva, A., & Cochet, C. (1996). Effects of carbon dioxide on the fate of Listeria monocytogenes, on aerobic bacteria and on the development of spoilage in minimally processed fresh endive. International Journal of Food Microbiology, 32, 159ā€“172.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Code of Federal Regulations (CFR). (1979). Acidified products. Title 21. Part 114. Washington, DC.: Government Printing Office http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm viewed December 20, 2007.

  • Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenisis. Annual Review of Phytopathology, 24, 383ā€“409.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Conway, W. S. (1984). Preharvest factors affecting postharvest losses from disease. In H. E. Moline (ed.) Postharvest pathology of fruits and vegetables: Postharvest losses in perishable crops. (pp. 11ā€“16). University of California Agricultural Experiment Station, Bull. No. 1914 (Pub. NE-87).

    Google ScholarĀ 

  • Conway, W. S. (1989). Altering nutritional factors after harvest to enhance resistance to postharvest disease. Phytopathology, 79, 1384ā€“1387.

    Google ScholarĀ 

  • Conway, W. S., Janisiewicz, W. J., Klein, J. D., & Sams, C. E. (1999). Strategy for combining heat treatment, calcium infiltration, and biological control to reduce postharvest decay of ā€œgalaā€ apples. Horticultural Science, 34, 700ā€“704.

    Google ScholarĀ 

  • Costilow, R. N., Bedford, C. L., Mingus, D., & Black, D. (1977). Purging of natural salt-stock pickle fermentations to reduce bloater damage. Journal of Food Science, 42, 234ā€“240.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Day, B. (1996). High oxygen modified atmosphere packaging for fresh prepared produce. Postharvest News Infection, 7, 31ā€“34.

    Google ScholarĀ 

  • Day, B. (2000). Novel MAP for freshly prepared fruit and vegetable products. Postharvest News Infection, 11, 27ā€“31.

    Google ScholarĀ 

  • Debevere, J. (1996). Criteria en praktische methoden voir de bepaling van de houdbaarheidsdatum In de etikettering. Etikettering, houdbaarheid en bewaring (voedingsmiddelen en recht 2) (pp. 37ā€“64). Belgiumā€‰: Die Keure, Brugge.

    Google ScholarĀ 

  • Delaquis, P. J., Stewart, S., Toivonen, P. M. A., & Moyls, A. L. (1999). Effect of warm, chlorinated water on the microbial flora of shredded lettuce. Food Research International, 32, 7ā€“14.

    ArticleĀ  Google ScholarĀ 

  • Delmouzos, J. G., Stadtman, F. H., & Vaughn, R. H. (1953). Malodorous fermentation ā€“ acidic constitutents of zapatera of olives. Journal of Agricultural and Food Chemistry, 1, 333ā€“334.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • DeVuyst, L. and Vandamme, E. J. (1994). Antimicrobial potential of lactic acid bacteria. bacteriocins of lactic acid bacteria (pp. 91ā€“142). In L. DeVuyst, and E. J. Vandamme (ed.), Bacteriocins of lactic acid bacteria. Blackie Academic and Professional, London, England.

    BookĀ  Google ScholarĀ 

  • Dhingra, O. D., & Sinclair, J. B. (1985). Basic plant pathology methods. Boca Raton, FL: CRC Press, Inc.

    Google ScholarĀ 

  • Diez-Gonzalez, F., & Russell, J. B. 1997a. The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. Microbiology, 143, 1175ā€“1180.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Diez-Gonzalez, F., & Russell, J. B. (1997b). Effects of carbonylcyanide-m-chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and K-12: uncoupling versus anion accumulation. FEMS Microbiology Letter, 151, 71ā€“76.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dijk, R., Beumer, R., De Boer, E., Bosboom, M., Brinkman, E., Debevere, J., et al. (1999) Microbiologie van Voedingsmiddelen: Methoden, Principes en Criteria. The Netherlands: Keesing Noordervliet, Houten.

    Google ScholarĀ 

  • Doesburg, J. J. (1965). Pectic substances in fresh and preserved fruits and vegetables. In Institute for research on storage and processing of horticultural produce (p. 44). Netherlands: University of Wageningen.

    Google ScholarĀ 

  • Downes, F. P., & Ito, K. (2001). Compendium for the microbiological examination of foods (4th ed.). Washington, DC: American Public Health Association.

    BookĀ  Google ScholarĀ 

  • Eckert, J. W., & Ogawa, J. M. (1988). The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annual Review Phytopathology, 26, 433ā€“469.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Economic Research Service (ERS) U. S. Department of Agriculture. (2007). Food availability data system. http://www.ers.usda.gov/data/foodconsumption/FoodAvailSpreadsheets.htm viewed November 19, 2007.

  • Erturk, E., & Picha, D. H. (2006). Microbiological quality of fresh-cut sweet potatoes. International Journal of Food Science and Technology, 41, 366ā€“374.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Etchells, J. L. (1950). Salt-tolerant yeasts from commercial cucumber brines. Texas Reports on Biology and Medicine, 8, 103ā€“104.

    Google ScholarĀ 

  • Etchells, J. L., Bell, T. A. Monroe, R. J., Masley, P. M., & Demain, A. L. (1958). Populations and softening enzyme activity of filamentous fungi on flowers, ovaries, and fruit of pickling cucumbers . Applied Microbiology, 6, 427ā€“440.

    CASĀ  Google ScholarĀ 

  • Etchells, J. L., Borg, A. F., & Bell, T. A. (1961). Influence of sorbic acid on populations and species of yeasts occurring in cucumber fermentations. Applied Microbiology, 9, 139ā€“144.

    CASĀ  Google ScholarĀ 

  • Etchells, J. L., Borg, A. F., & Bell, T. A. (1968). Bloater formation by gas-forming lactic acid bacteria in cucumber fermentations. Applied Microbiology, 16, 1029ā€“1035.

    CASĀ  Google ScholarĀ 

  • Etchells, J. L., & Jones, I. D. (1942). Pasteurization of pickle products. Fruit Products, 21, 330ā€“332.

    Google ScholarĀ 

  • Farber, J. N., Harris, L. J., Parish, M. E., Beuchat, L. R., Suslow, T. V., Gorney, J. R., et al. (2003). Microbiological safety of controlled and modified atmosphere packaging of fresh and fresh-cut produce. In Comprehensive reviews in food science and food safety (Vol. 2., pp. 142ā€“160.

    Google ScholarĀ 

  • Fernandez, A. G., Garcia, P. G., & Balbuena, M. B. (1995). Olive fermentations. In H. J. Rehm & G. Reed (Eds.), Enzymes, biomass, food and feed (pp. 593ā€“627). New York: NY, VCH.

    ChapterĀ  Google ScholarĀ 

  • Fleet, G. (1992). Spoilage yeasts. Critical Reviews in Biotechnology, 12, 1ā€“44.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fleming, H. P., Daeschel, M. A., McFeeters, R. F., & Pierson, M. D. (1989). Butyric acid spoilage of fermented cucumbers. Journal of Food Science, 54, 636ā€“639.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fleming, H. P., Etchells, J. L., Thompson, R. L., & Bell, T. A. (1975). Purging of CO2 from cucumber brines to reduce bloater damage. Journal of Food Science, 40. 1304ā€“1310.

    ArticleĀ  Google ScholarĀ 

  • Fleming, H. P., Kyung, K. H., & Breidt, F. (1995). Vegetable fermentations. In H. J. Rehm & G. Reed (Eds.), Biotechnology (pp. 631ā€“661). New York: VCH.

    Google ScholarĀ 

  • Fleming, H. P., McFeeters, R. F., & Thompson, R. L. (1987). Effects of sodium chloride concentration on firmness retention of cucumbers fermented and stored with calcium chloride. Journal of Food Science. 52, 653ā€“657.

    ArticleĀ  Google ScholarĀ 

  • Fleming, H. P., Thompson, R. L., Etchells, J. L., Kelling, R. E., & Bell T. A. (1973). Carbon dioxide production in the fermentation of brined cucumbers. Journal of Food Science, 38, 504ā€“506.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Food and Drug Administation (FDA). (1998). Guide to minimize microbial food safety hazards for fresh fruits and vegetables. http:///www.cfsan.fda.gov/~dms/prodguid.html viewed February 4, 2008.

  • FDA (2000). FDA advises consumers about produce safety. http://www.cfsan.fda.gov/~lrd/tpproduce.html viewed November 19, 2007.

  • FDA (2007). Guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables. http://www.cfsan.fda.gv/~dms/prodgui3.html viewed February 4, 2008.

  • Francis, G. A., & Oā€™Beirne, D. (1997). Effects of gas atmosphere, antimicrobial dip and temperature on the fate of Listeria innocua and Listeria monocytogenes on minimally processed lettuce. International Journal of Food Science and Technology, 32, 141ā€“151.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Francis, G. A., Thomas, C., & Oā€™Beirne, D. (1999). The microbiological safety of minimally processed vegetables. International Journal of Food Science and Technology, 34, 1ā€“22.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fred, E. B. and Peterson, W. H. (1922). The production of pink sauerkraut by yeasts. Journal of Bacteriology, 7, 257ā€“269.

    CASĀ  Google ScholarĀ 

  • Fung, Y. C. F. (2006). Rapid detection of microbial contaminants. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of Fresh Fruits and Vegetables (pp. 565ā€“594). New York: Taylor and Francis Group.

    Google ScholarĀ 

  • Garg, N., Churey, J. J., & Splittstoesser, D. F. (1990). Effect of processing conditions on the microflora of fresh-cut vegetables. Journal of Food Protection, 53, 701ā€“703.

    Google ScholarĀ 

  • Geeson, N., Churey, J. J., & Splittstoesser, D. F. (1990). The fungal and bacterial flora of stored white cabbage, Journal of Applied Bacteriology, 46, 189ā€“193.

    ArticleĀ  Google ScholarĀ 

  • Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., et al. (1981). Manual of methods for general bacteriology. Washington, DC: American Society for Microbiology.

    Google ScholarĀ 

  • Gill, C. O., & Tan, K. H. (1979). Effect of carbon dioxide on growth of Pseudomonas fluorescens. Applied and Environmental Microbiology, 38, 237ā€“240.

    CASĀ  Google ScholarĀ 

  • Gimenez, M., Olarte, C., Sanz, S., Lomas, C., Echavarri, J. F., & Ayala, F. (2003). Relation between spoilage and microbiological quality in minimally processed artichoke packaged with different films. Food Microbiology, 20, 231ā€“242.

    ArticleĀ  Google ScholarĀ 

  • Goepfert, J. M. (1980). Vegetables, fruits, nuts and their products. In J. H. Silliker, R. P. Elliott, A. C. Baird-Parker, F. L. Bryan, J. H. B. Christian, D. S. Clark, J. C. Olson, Jr., & T. A. Roberts (Eds.), Microbial ecology of foods (pp. 606ā€“642). New York: Academic Press.

    Google ScholarĀ 

  • Hagenmaier, R. D., & Baker, R. A. (1998). A survey of the microbial population and ethanol content of bagged salad. Journal of Food Protection, 61, 357ā€“359.

    CASĀ  Google ScholarĀ 

  • Hakim, A., Austin, M. E., Batal, D., Gullo, S., & Khatoon, M. (2004). Quality of fresh-cut tomatoes. Journal of Food Quality, 27, 195ā€“206.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Han, J. H. (2003). Antimicrobial food packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 50ā€“70).Cambridge, UK: Woodhead Publishing Ltd.

    ChapterĀ  Google ScholarĀ 

  • Hao, Y. Y., Brackett, R. H., Beuchat, L. R., & Doyle, M. P. (1998). Microbiological quality and the inability of proteolytic Clostridium botulinum to produce toxin in film-packaged fresh-cut cabbage and lettuce. Journal of Food Protection, 61, 1148ā€“1153.

    CASĀ  Google ScholarĀ 

  • Harris, L. J., Farber, J. N., Beuchat, L. R., Parish, M. E., Suslow, T. V. Garrett, E. H., et al. (2003). Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens, in fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety 2(Suppl), 78ā€“141.

    ArticleĀ  Google ScholarĀ 

  • Heard, G. (2000). Microbial safety of ready-to-eat salads and minimally processed vegetables and fruits. Food Science and Technology Today, 14, 15ā€“21.

    Google ScholarĀ 

  • Holzapfel, W. H., Geisen, R., & Schillinger, U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins, and food-grade enzymes. International Journal of Food Microbiology, 24, 343ā€“362.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hsin-Yi, C., & Chou, C.-C. (2001). Acid adaptation and temperature effect on the survival of E. coli O157:H7 in acidic fruit juice and lactic fermented milk product. International Journal of Food Microbiology, 70, 189ā€“195.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • International Fresh-cut Product Association (IFPA). (2001). Fresh-cut produce: Get the facts! http://www.fresh-cuts.org viewed December 20, 2007.

  • Ito, K. A., Seeger, M. L., Bhorer, C. W., Denny, C. B., & Bruch, M. K. (1968). Thermal and germicidal resistance of Clostridium botulinum types A, B and E spores. In Proceedings of the first U.S. ā€“ Japan conference on toxic microorganisms. M. Herzberg, ed., p. 410, Washington, DC: U. J. N. R. Joint panels on toxic microorganisms and the U.S. Department of Interior.

    Google ScholarĀ 

  • Jackson, G. J. (1998). Bacteriological analytical manual (8th ed., Revision A). Gaithersburg, Maryland: AOAC International.

    Google ScholarĀ 

  • Jacxsens, L., Devlieghere, F., Ragaert, P., Van der Steen, C., & Debevere, J. (2001). Effect of high oxygen modified atmosphere packaging on microbial growth and sensorial qualities of fresh-cut produce. International Journal of Food Microbiology, 71, 197ā€“210.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jacxsens, L., Devlieghere, F., Ragaert, P., Vanneste, E., & Debevere, J. (2003). Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce. International Journal of Food Science and Technology, 31, 359ā€“366.

    Google ScholarĀ 

  • Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411ā€“441.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jockel, Von J., & Otto, W. (1990). Technologische und hygienische aspecte bei der herstellung und distribution von vorgeschnittenen salaten. Archiv fur Lebensmittelhygiene, 41, 129ā€“152.

    Google ScholarĀ 

  • Kader, A. A. (1992). Postharvest biology and technology: an overview. In A. Kader (tech. ed.) Postharvest Technology of Horticultural Crops. (pp. 15ā€“20). University of California Division of Agriculture and Natural Resources, Pub. 3311.

    Google ScholarĀ 

  • Kader, A. A., & Ben-Yehoshua, S. (2000). Effects of superatmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables. Postharvest Biology and Technology, 20, 1ā€“13.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kakiomenow, K., Tassou, C., & Nychas, G. (1996). Microbiological physiochemical and organoleptic changes of shredded carrots stored under modified storage. International Journal of Food Science Technology, 31, 359ā€“366.

    ArticleĀ  Google ScholarĀ 

  • Kantor, L. S., Lipton, K., Manchester, A., & Oliveira, V. (1997). Estimating and addressing Americaā€™s food losses. Food Review, Jan-Apr: 2ā€“12.

    Google ScholarĀ 

  • Kaufman, P. R., Handy, C. R., McLaughlin, E. W., Park, K., & Green, G. M. (2000). Understanding the dynamics of produce markets: consumption and consolidation grow. USDA-ERS Information Bulletin No. 758.

    Google ScholarĀ 

  • King, A. D., Jr., Michener, H. D., Bayne, H. G., & Mihara, K. L. (1976). Microbial studies on shelf life of cabbage and coleslaw. Applied and Environmental Microbiology, 31, 404ā€“407.

    CASĀ  Google ScholarĀ 

  • King, A. D., Jr., Magnuson, Torok, T., & Goodman, N. (1991) Microbial Flora and Storage Quality of Partially Processed Lettuce. Journal of Food Science, 56(2), 459ā€“461.

    Google ScholarĀ 

  • Koek, P. C., De Witte, Y., & De Maaker, J. (1983) The microbial ecology of prepared raw vegetables. In T. A. Roberts & ,F. A. Skinner (Eds.), Food microbiology: Advances and prospects (pp. 221ā€“240). London: Academic Press.

    Google ScholarĀ 

  • Legnani, P. P., & Leoni, E. (2004) Effect of processing and storage conditions on the microbiological quality of minimally processed vegetables. International Journal of Food Science and Technology, 39, 1061ā€“1068.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lelliott, R. A., & Stead, D. E. (1987). Methods and diagnosis of bacterial diseases of plants. Palo Alto, CA: Blackwell Scientific Publishing.

    Google ScholarĀ 

  • Lequeu, J., Fauconnier, M-L, Chammai, A., Bronner, R., & Blee, E. (2003). Formation of plant cuticle: evidence for the occurrence of the peroxygenase pathway. Plant Journal, 36, 155ā€“164.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liao C-H. (2005). Bacterial soft rot. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of fruits and vegetables (pp. 117ā€“134). Boca Raton, Fl: CRC Press.

    ChapterĀ  Google ScholarĀ 

  • Liao, C-H., & Fett, W. F. (2001). Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce. Journal of Food Protection, 64, 1110ā€“1115.

    CASĀ  Google ScholarĀ 

  • Liao, C-H., & Wells, J. M. (1987) Diversity of pectolytic, fluorescent pseudomonads causing soft rots of fresh vegetables at produce markets. Phytopathology, 77, 673ā€“677.

    ArticleĀ  Google ScholarĀ 

  • Liao, C-H., Hung, H. Y., & Chatterjee, A. K. (1988). An extracellular pectate lyase is the pathogenicity factor of the soft-rotting bacterium Pseudomonas viridiflava. Molecular Plant-Microbe Interactions, 1, 199ā€“206.

    ArticleĀ  Google ScholarĀ 

  • Liao, C-H., McCallus, D. E., & Wells J. M. (1993). Calcium-dependent pectate lyase production in the soft-rotting bacterium Pseudomonas fluorescens, Phytopathology, 83, 813ā€“818.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liao, C-H., McCallus, D. E., Wells, J. M., Tzean, S. S., & Kang, G. Y. (1996). The repB gene required for production of extracellular enzymes and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA gene of Pseudomonas syringae. Canadian Journal of Microbiology, 42, 177ā€“182.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liao, C-H., Sullivan, J., Gardy, J., & Wong, L. J. C. (1997). Biochemical characterization of pectate lyases produced by fluorescent pseudomonads associated with spoilage of fresh fruits and vegetables. Journal of Applied Microbiology, 83, 10ā€“16.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lindow, S. E., & Brandl, M. T. (2003). Minireview: Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69, 1875ā€“1883.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lopez-Galvez, G., Peiser, G., & Nie, X. (1997). Quality changes in packaged salad products during storage. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 205, 64ā€“72.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lund, B. M. (1982). The effect of bacteria on post-harvest quality of vegetables and fruits, with particular reference to spoilage. Ch. 9 In M. E. Rhodes-Roberts and F. A. Skinner (Eds.), Bacteria and plants (pp. 133ā€“153). Society for Applied Bacteriology. Symposium Series No. 10. Sydney: Academic Press.

    Google ScholarĀ 

  • Lund, B. M. (1983). Bacterial spoilage. In C. Dennis (Ed.), Post-harvest pathology of fruits and vegetables (pp. 218ā€“257). London: Academic Press.

    Google ScholarĀ 

  • Lund, B. M. (1993). The microbiological safety of prepared salad vegetables. Food Technology International Europe, 1993, 196ā€“200.

    Google ScholarĀ 

  • Lund, B. M., Baird-Parker, T. C., & Gould, G. W. (2000). The microbiological safety and quality of food. Gaithersburg, Maryland: Aspen Publishers, Inc.

    Google ScholarĀ 

  • Lund, B. M., Brocklehurst, T. F., & Wyatt, G. M.. (1981). Characterization of strains of Clostridium puniceum sp. nov., a pink-pigmented, pectolytic bacterium. Journal of Genetic Microbiology, 122, 17ā€“26.

    Google ScholarĀ 

  • Magnusson, J. A., King, A. D., Jr., & Torok, T. (1990). Microflora of partially processed lettuce. Applied Environmental Microbiology, 56, 3851ā€“3854.

    Google ScholarĀ 

  • Mahovic, M., Sargent, S. A., & Bartz, J. A. (2005). Identifying and controlling postharvest tomato diseases in florida. University of Florida Institute, of Food and Agricultural Sciences (UF/IFAS), Doc. HS 866. (http://edis.ifas.ufl.edu/HS131).

  • Mandrell, R. E., Gorski, L, & Brandl, M. T. (2006). Attachment of microorganisms to fresh produce. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of fresh fruits and vegetables (pp. 33ā€“73). New York: Taylor and Francis Group.

    Google ScholarĀ 

  • Manvell, P. M., & Ackland, M. R. (1986). Rapid detection of microbial growth in vegetable salads at chill and abuse temperatures. Food Microbiology, 3, 59ā€“65.

    ArticleĀ  Google ScholarĀ 

  • Marchetti, R., Casadei, M. A., & Guerzoni, M. E. (1992). Microbial population dynamics in ready-to-use vegetable salads. Italian Journal of Food Science, 2, 97ā€“108.

    Google ScholarĀ 

  • Martinez-Ferrer, M., & Harper, C. (2005). Reduction in microbial growth and improvement of storage quality in fresh-cut pineapple after methyl jasmonate treatment. Journal of Food Quality, 28, 3ā€“12.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martinez-Ferrer, M., Harper, C., Perez-Muroz, F., & Chaparro, M. (2002). Modified atmosphere packaging of minimally processed mango and pineapple fruits. Journal of Food Science, 67, 3365ā€“3371.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mazollier, J., Bardet, M. C., & Bonnafoux, F. (1990). La Laitue de Ive gamme. Infos-CTIFL, 59, 23ā€“26.

    Google ScholarĀ 

  • McFeeters, R. F., & Fleming, H. P.. (1989). Inhibition of cucumber tissue softening in acid brines by multivalent cations ā€“ Inadequacy of the pectin egg box model to explain textural effects. Journal of Agricultural and Food Chemistry, 37,:1053ā€“1059.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McFeeters, R. F., & Fleming, H. P. (1990). Effect of calcium-ions on the thermodynamics of cucumber tissue softening. Journal of Food Science, 55, 446ā€“449.

    ArticleĀ  Google ScholarĀ 

  • McFeeters, R. F., Fleming, H. P., & Daeschel, M. A.. (1984). Malic acid degradation and brined cucumber bloating. Journal of Food Science, 49,:999ā€“1002.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McKellar, R. C., & Knight, K. P. (1999). Growth and survival of varioius strains of enterohemorrhagic Escherichia coli in hydrochloric and acetic Acid. Journal of Food Protection, 62, 1462ā€“1469.

    Google ScholarĀ 

  • Miedes, E., & Lorences, E. P. (2004). Apple (malus domestica) and tomato (lycopersicum) fruits cell-wall hemicelluloses and xyloglucan degradation during penicillium expansum infection. Journal of Agricultural and Food Chemistry, 52, 7957ā€“7963.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Molin, G. (2000). Modified atmospheres. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (pp. 214ā€“234). Gaithersburg, MA: Aspen Publishers.

    Google ScholarĀ 

  • Munsch, P., Geoffroy, V. A., Alatossava, T., & Meyer, J-M. (2000). Application of siderotyping for characterization of pseudomonas tolaasii and pseudomonas reactans isolates associated with brown blotch disease of cultivated mushrooms. Applied Environmental Microbiology, 66, 4834ā€“4841.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nguyen-the, C., & Carlin, F. (1994). The microbiology of minimally processed fresh fruits and vegetables. Critical Reviews in Food Science and Nutrition, 34, 371ā€“401.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nguyen-the, C., & Carlin, F. (2000). Fresh and processed vegetables. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (Vol. 1., pp. 620ā€“684). Gaithersburg, Maryland: Aspen Publishers, Inc.

    Google ScholarĀ 

  • Nguyen-the, C., & Prunier, J. P. (1989) Involvement of pseudomonads in the deterioration of ā€œready-to-useā€ salads. International Journal of Food Science and Technology, 24, 47ā€“58.

    ArticleĀ  Google ScholarĀ 

  • Oā€™Connor-Shaw, R. E., Roberts, R., Ford, A. L., & Nottingham, S. M. (1994). Shelf life of minimally processed honeydew melon, kiwifruit, papaya, pineapple and cantaloupe. Journal of Food Science, 59, 1202ā€“1206, 1215.

    ArticleĀ  Google ScholarĀ 

  • Oā€™Connor-Shaw, R. E., Roberts, R., Ford, A. L., & Nottingham, S. M. (1996). Changes in sensory quality of sterile cantaloupe dices stored in controlled atmospheres. Journal of Food Science, 61, 847ā€“851.

    ArticleĀ  Google ScholarĀ 

  • Oā€™Hare, T. J. (1994). Respiratory characteristics of cut pineapple tissue. Post Harvest Group, DPI Report, Queensland, Australia.

    Google ScholarĀ 

  • Ohlsson, T., & Bengtsson, N. (2002). Minimally processing technologies in the food industry. New York Washington, DC: CRC Press, Boca Raton Boston.

    BookĀ  Google ScholarĀ 

  • Passos, F. V., Ollis, D. F., Fleming, H. P., Hassan, H. M., & Felder, R. M. (1993). Modeling the cucumber fermentation: growth of Lactobacillus plantarum. Journal of Industrial Microbiology, 12, 341ā€“345.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Payne, J. H., Schoedel, C., Keen, N. T., & Collmer, A. (1987). Multiplication and virulence in plant tissues of Escherichia coli clones producing pectate lyase isozymes PLb and PLe at high levels and of an Erwinia chrysanthemi mutant deficient in Ple. Applied Environmental Microbiology, 53, 2315ā€“2320.

    CASĀ  Google ScholarĀ 

  • Pederson, C. S., & Albury, M. N. (1969). The Sauerkraut Fermentation. New York State Agriculture Experiment Station (Geneva, NY) Technology Bulletin 824.

    Google ScholarĀ 

  • Pederson, C. S., & Kelly, C. D. (1938). Development of pink color in sauerkraut. Food Research, 3, 583ā€“588.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Perombelon, M. C. M., Cullings-Hander, J., & Kelman, A. (1978). Population dynamics of Erwinia carotovora and pectolytic Clostridium spp. in relation to decay of potatoes, Phytopathology, 69, 167ā€“173.

    ArticleĀ  Google ScholarĀ 

  • Pitt, J. I., & Hocking, A. D. (1985). The ecology of fungal food spoilage. In J. I. Pitt & A. D. Hocking (Eds.), Fungi and food spoilage (pp. 5ā€“8). New York: Academic Press.

    Google ScholarĀ 

  • Plastourgos, S., & Vaughn, R. H. (1957). Species of Propionibacterium associated with zapatera spoilage of olives. Applied Microbiology, 5, 267ā€“271.

    CASĀ  Google ScholarĀ 

  • Plengvidhya, V. 2003. Ph.D. thesis. NC State University. Microbial ecology of sauerkraut fermentation and genome analysis of lactic acid bacterium Leuconostoc mesenteroides ATCC 8293.

    Google ScholarĀ 

  • Powrie, W. D., Wu, C. H., & Skura, B. J. (1988). Preservation of cut and segmented fresh fruit pieces. European Patent Application, 88104958.9, November 9.

    Google ScholarĀ 

  • Poubol, J., & Izumi, H. (2005). Shelf life and microbial quality of fresh-cut mango cubes stored in high CO2 atmospheres. Journal of Food Science, 70, M69ā€“M74.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Presser, K, Ross, A. T., & Ratkowsky, D. A. (1998). Modeling the growth limits (growth/no growth Interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Applied Environmental Microbiology, 64, 1773ā€“1779.

    CASĀ  Google ScholarĀ 

  • Py, B., Barras, F., Harris, S., Robson, N., & Salmond, G. P. C. (1998). Extracellular enzymes and their role in Erwinia virulence, Methods Microbiology, 27, 157ā€“168.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Robbs, P. G., Bartz, J. A., McFie G., & Hodge N. C. (1996a). Causes of decay of fresh-cut celery. Journal of Food Science, 61, 444ā€“448.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Robbs, P. G., Bartz, J. A., Mcfie G., & Hodge N. C. (1996b). Potential inoculum sources for decay of fresh-cut celery. Journal of Food Science, 61, 449ā€“453.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Saltveit, M. E., & McFeeters, R. F. (1980). Polygalacturonase activity and ethylene synthesis during cucumber fruit development and maturation. Plant Physiology, 66, 1019ā€“1023.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sapers, G. M., Gorney, J. R., & Yousef, A. E. (2005) Microbiology of fruits and vegetables. Boca Raton, Fl: CRC Press.

    Google ScholarĀ 

  • Sapers, G. M., Miller, R. L., Jantschke, M., & Mattrazzo, A. M. (2001). Factors limiting the efficacy of hydrogen peroxide washes for decontamination of apples containing Escherichia coli. Journal of Food Science, 65, 529ā€“532.

    ArticleĀ  Google ScholarĀ 

  • Sapers, G. M., Miller, R. L., Pilizota, V., & Mattrazzo, A. M. (2001). Antimicrobial treatments for minimally processed cantaloupe melon. Journal of Food Science, 66, 345ā€“349.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schaad, N. W. (1988). Laboratory guide for identification of plant pathogenic bacteria (2nd ed.). St. Paul, Minnesota: APS Press.

    Google ScholarĀ 

  • Sharpe, A. N., Hearn, E. M., & Kovacs-Nolan, J. (2000). Comparison of membrane filtration rates and hydrophobic grid membrane filter coliform and Escherichia coli counts in food suspensions using paddle-type and pulsifier sample preparation procedures. Journal of Food Protection, 63, 126ā€“130.

    CASĀ  Google ScholarĀ 

  • Shelef, L. A. (1994). Antimicrobial effects of lactates: A review. Journal of Food Protection, 57, 445ā€“450.

    CASĀ  Google ScholarĀ 

  • Sholberg, P. L., & Conway, W. S. (2004). Postharvest Pathology. In The commercial storage of fruits, vegetables, and florist and nursery stocks, USDA-ARS Agriculture Handbook Number 66. Draft ā€“ revised April 2004.

    Google ScholarĀ 

  • Snowdon, A. L. (1990). Nature and causes of post-harvest deterioration. In A color atlas of post-harvest diseases and disorders of fruits and vegetables, volume 1: General introduction and fruits (pp. 11ā€“53). London, England: Wolfe Scientific Publications.

    Google ScholarĀ 

  • Sommer, N. F., Fortlagae, R. J., & Edwards, D. C. (1992). Postharvest diseases of selected commodities. In A. Kader (tech. Ed.) Postharvest technology of horticultural crops (pp. 117ā€“160). University of California Division of Agriculture and Natural Resources, Pub. 3311.

    Google ScholarĀ 

  • Splittstoesser, D. F. (1987). Fruits and fruit products. In L. R. Beuchat (Ed.), Food and beverage mycology (pp. 101ā€“128). New York: Avi/van Nostrand Reinhold.

    Google ScholarĀ 

  • Sofos, J. N. (1993). Current microbiological considerations in food preservation. International Journal of Food Microbiology, 19, :87ā€“108.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stamer, J., Hrazdina, R. G., & Stoyla, B. O. (1973). Induction of red color formation in cabbage juice by Lactobacillus brevis and its relationship to pink sauerkraut. Applied Microbiology, 26, 161ā€“166.

    CASĀ  Google ScholarĀ 

  • Sugar, D., Righetti, T. L., Sanchez, E. E., & Khemira(NOTEā€‰: Need initials). (1992). Management of nitrogen and calcium in pear tree for enhancement of fruit resistance to postharvest decay. Hort Technology 2, 382ā€“387.

    Google ScholarĀ 

  • Sugar, D., & Spotts, R. (1995). Preharvest strategies to reduce postharvest decay. In 1995 Washington tree fruit postharvest conference preceedings, washington state horticultural association. Wenatchee, WA.

    Google ScholarĀ 

  • Torok, T., & King, A. D., Jr. (1991). Comparative study on the identification of food-borne yeasts. Applied Environmental Microbiology, 57, 1207ā€“1212.

    CASĀ  Google ScholarĀ 

  • Tournas, V. H. (2005a). Moulds and yeasts in fresh and minimally processed vegetables and sprouts. International Journal of Food Microbiology, 99, 71ā€“77.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tournas, V. H. (2005b). Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Review of Microbiology 31, 33ā€“44.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ukuku, D. O., & Fett, W. (2002). Behavior of Listeria monocytogenes inoculated on cantaloupe surfaces and efficacy of washing treatments to reduce transfer from rind to fresh-cut pieces. Journal of Food Protection, 65, 924ā€“930.

    Google ScholarĀ 

  • Ukuku, D. O., & Sapers, G. M. (2001). Effect of sanitizer treatments on Salmonella stanley attached to the surface of cantaloupe and cell transfer to fresh-cut tissues during cutting practice. Journal of Food Protection, 64, 1286ā€“1291.

    CASĀ  Google ScholarĀ 

  • Ukuku, D. O., & Sapers, G. M. (2005). Microbiological safety issues of fresh melons. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of fruits and vegetables (pp. 231ā€“251). Boca Raton, Fl: CRC Press.

    ChapterĀ  Google ScholarĀ 

  • Uljas, H. E., & Ingham, S. C. (1998). Survival of Escherichai coli O157:H7 in synthetic gastric fluid after cold and acid habituation in apple juice or trypticase soy broth acidified with hydrochloric acid or organic acids. Journal of Food Protection, 61, 939ā€“947.

    CASĀ  Google ScholarĀ 

  • Van Buren, J. P. (1986). Softening of cooked snap beans and other vegetables in relation to pectins and salts. In M. L. Fishman & J. J. Jen (Eds.), Chemistry and function of pectins. Washington, DC: American Chemical Society.

    Google ScholarĀ 

  • Van Kan, J. A. L. (2006). Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science. 11, 247ā€“ā€“253.

    Google ScholarĀ 

  • Warren, K. (2005). Category offers promise for processors, retails. Fresh cut magazine, June, http://www.freshcut.com/pages/arts

  • Watada, E. A., Herner, R. C., Kader, A. A., Romani, R. J., & Staby, G. L. (1984). Terminology for the description of developmental stages of horticultural crops. Hortscience, 19, 220ā€“21.

    Google ScholarĀ 

  • Watkins, C. B., Kupferman, E., & Rosenberger, D. A. (2004). Apple. In The commercial storage of fruits, vegetables, and florist and nursery stocks, USDA-ARS Agriculture Handbook Number 66. Draft ā€“ revised April 2004.

    Google ScholarĀ 

  • Wells, J. M. (1974). Growth of Erwinia atroseptica and Pseudomonas fluorescens in low O2 and high CO2 atmospheres. Phytopathology, 64, 1012ā€“1015.

    ArticleĀ  Google ScholarĀ 

  • Wells, J. M., Sapers, G. M., Fett, W. F., Butterfield, J. E., Jones, J. B., Bouzar, H., & Miller, F. C. (1996). Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. ā€˜reactansā€™, and P. ā€˜gingeriā€™. Postharvest Pathol. Mycotoxins. 86, 1098ā€“1104.

    Google ScholarĀ 

  • Wiley, R. C. (1994). Minimally processed refrigerated fruits and vegetables. New York: Chapman and Hall.

    BookĀ  Google ScholarĀ 

  • Wu, V. C. H., Jitareerat, P., & Fung, D. Y. C. (2003). Comparison of the Pulsifier and the Stomacher for recovering viable microorganisms in vegetables. Journal of Rapid Methods Automation in Microbiology, 11. 145ā€“151.

    ArticleĀ  Google ScholarĀ 

  • Zhuang, H., Barth, M. M., & Hankinson, T. R. (2003). Microbial safety, quality, and sensory aspects of fresh-cut fruits and vegetables. In J. S. Novak, G. M. Sapers, & V. K. Juneja (Eds.), Microbial safety of minimally processed foods (pp. 255ā€“278). Boca Raton, Fl: CRC Press.

    Google ScholarĀ 

  • Zhuang, H., Barth, M. M., & Hildebrand, D. F. (2002). Fatty acid oxidation in plant tissues. In C. C. Akoh & D. B. Min (Eds.). Food lipids: Chemistry, nutrition, and biotechnology (2nd ed., pp. 413ā€“364). New York, Basel, Hong Kong: Marcel Dekker, Inc.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barth, M., Hankinson, T.R., Zhuang, H., Breidt, F. (2009). Microbiological Spoilage of Fruits and Vegetables. In: Sperber, W., Doyle, M. (eds) Compendium of the Microbiological Spoilage of Foods and Beverages. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0826-1_6

Download citation

Publish with us

Policies and ethics