Skip to main content

Barycentric Bounds in Stochastic Programming: Theory and Application

  • Chapter
  • First Online:
Stochastic Programming

Abstract

The design and analysis of efficient approximation schemes are of fundamental importance in stochastic programming research. Bounding approximations are particularly popular for providing strict error bounds that can be made small by using partitioning techniques. In this chapter we develop a powerful bounding method for linear multistage stochastic programs with a generalized nonconvex dependence on the random parameters. Thereby, we establish bounds on the recourse functions as well as compact bounding sets for the optimal decisions. We further demonstrate that our bounding methods facilitate the reliable solution of important real-life decision problems. To this end, we solve a stochastic optimization model for the management of nonmaturing accounts and compare the bounds on maximum profit obtained with different partitioning strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the presence of concave recourse functions upper and lower bounds switch roles.

  2. 2.

    Sometimes, notation is simplified by further introducing a deterministic dummy random variable \(\boldsymbol \xi^0\) of the past.

  3. 3.

    Decision processes will also be referred to as strategies or policies.

  4. 4.

    Random variables appearing in both the objective function and the constraints of the stochastic program must be duplicated. The first copy of such a random variable is appended to η, while the second copy is appended to ξ. Note that the two copies will be discretized differently.

  5. 5.

    If the objective function coefficients and the rhs vectors are linear affine functions of the stochastic parameters, then the recourse functions exhibit a saddle shape themselves and no correction terms are needed. This situation is investigated in Frauendorfer (1994, 1996).

  6. 6.

    Analytical formulae for the masses and coordinates of the atoms of P l and P u are provided in Frauendorfer (1992); cf. also Frauendorfer (1994, 1996) and Kuhn (2004).

  7. 7.

    Continuity of A t follows inductively from the dominated convergence theorem.

  8. 8.

    Notice that \(F^l_t\) and \(F^u_t\) are concave polyhedral functions of x t for all fixed parameter values, since we are dealing with linear stochastic programs and since the barycentric measures have finite supports.

  9. 9.

    For a survey of the theory of set convergence see Rockafellar and Wets (1998, Chapter 4).

  10. 10.

    For instance, the well-known Cox, Ingersoll, and Ross model (Cox et al. 1985) involves a “square root process” with \(\gamma=0.5\).

References

  • Ash, R.B.: Real Analysis and Probability. Probability and Mathematical Statistics. Academic, Berlin (1972)

    Google Scholar 

  • Attouch, H., Wets, R.J.-B.: Approximation and convergence in nonlinear optimization. In: Mangasarian, O., Meyer, R., Robinson, S.M. (eds.) Nonlinear Programming 4, pp. 367–394. Academic, New York, NY (1981)

    Google Scholar 

  • Beale, E.M.L.: On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. 17B, 173–184 (1955)

    MathSciNet  Google Scholar 

  • Birge, J.R., Dulá, J.H.: Bounding separable recourse functions with limited distribution information. Ann. Oper. Res. 30, 277–298 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York, NY (1997)

    MATH  Google Scholar 

  • Birge, J.R., Wets, R.J.-B.: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Program. Study 27, 54–102 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Birge, J.R., Wets, R.J.-B.: Computing bounds for stochastic programming problems by means of a generalized moment problem. Math. Oper. Res. 12, 149–162 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, J.C., Ingersoll, J.E., Ross, S.A.: A Theory of the Term Structure of Interest Rates. Econometrica 53(2), 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  • Dantzig, G.B.: Linear programming under uncertainty. Manage. Sci. 1, 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer, New York, NY (1997)

    MATH  Google Scholar 

  • Dokov, S.P., Morton, D.P.: Higher-order upper bounds on the expectation of a convex function. The Stochastic Programming E-Print Series (SPEPS), Jan (2002)

    Google Scholar 

  • Dokov, S.P., Morton, D.P.: Second-order lower bounds on the expectation of a convex function. Math. Oper. Res. 30(3), 662–677 (2005) ISSN 0364-765X

    Article  MathSciNet  MATH  Google Scholar 

  • Dupačová, J.: Minimax stochastic programs with nonconvex nonseparable penalty functions. In: Prékopa, A. (ed.) Progress in Operations Research, volume 1 of Colloquia Mathematica Societatis János Bolyai, pp. 303–316. North-Holland, Amsterdam (1976)

    Google Scholar 

  • Dupačová, J.: The minimax approach to stochastic programming and an illustrative application. Stochastics 20, 73–88 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Dupačová, J.: Applications of stochastic programming under incomplete information. Comput. Appl. Math. 56, 113–125 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Dupačová, (as Žáčková), J.: On minimax solutions of stochastic linear programming problems. Časopis pro Pěstování Matematiky 91, 423–429 (1966)

    Google Scholar 

  • Edirisinghe, C.: New second-order bounds on the expectation of saddle functions with applications to stochastic linear programming. Oper. Res. 44, 909–922 (1996)

    Article  MATH  Google Scholar 

  • Edirisinghe, C., You, G.-M.: Second-order scenario approximation and refinement in optimization under uncertainty. Ann. Oper. Res. 64, 143–178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Edirisinghe, C., Ziemba, W.T.: Bounds for two-stage stochastic programs with fixed recourse. Math. Oper. Res. 19, 292–313 (1994a)

    Article  MathSciNet  MATH  Google Scholar 

  • Edirisinghe, C., Ziemba, W.T.: Bounding the expectation of a saddle function with application to stochastic programming. Math. Oper. Res. 19, 314–340 (1994b)

    Article  MathSciNet  Google Scholar 

  • Edmundson, H.P.: Bounds on the expectation of a convex function of a random variable. Paper 982, The Rand Corporation, Santa Monica, CA (1956)

    Google Scholar 

  • Floudas, C.A.: Deterministic Global Optimization. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  • Forrest, B., Frauendorfer, K., Schürle, M.: A stochastic optimization model for the investment of savings account deposits. In: Kischka, P., Lorenz, H.-W., Derigs, U., Domschke, W., Kleinschmidt, P., Mhring, R. (eds.) Operations Research Proceedings 1997, pp. 382–387. Springer, New York, NY (1998)

    Chapter  Google Scholar 

  • Frauendorfer, K.: Solving SLP recourse problems with arbitrary multivariate distributions — the dependent case. Math. Oper. Res. 13, 377–394 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Frauendorfer, K.: Stochastic two-stage programming. Lecture Notes in Economics and Mathematical Systems, vol. 392. Springer, Berlin (1992)

    Book  Google Scholar 

  • Frauendorfer, K.: Multistage stochastic programming: Error analysis for the convex case. Z. Oper. Res. 39(1), 93–122 (1994)

    MathSciNet  MATH  Google Scholar 

  • Frauendorfer, K.: Barycentric scenario trees in convex multistage stochastic programming. Math. Program. 75(2), 277–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Frauendorfer, K., Haarbrücker, G.: Solving sequences of refined multistage stochastic linear programs. Ann. Oper. Res. 124, 133–163 (2003)

    Article  MathSciNet  Google Scholar 

  • Frauendorfer, K., Kall, P.: A solution method for SLP recourse problems with arbitrary multivariate distributions — the independent case. Probl. Contr. Inform. Theor. 17, 177–205 (1988)

    MathSciNet  MATH  Google Scholar 

  • Frauendorfer, K., Marohn, C., Marti, K., Kall, P.: Refinement issues in stochastic multistage linear programm- ing. In: Stochastic Programming Methods and Technical Applications (Proceedings of the 3rd GAMM/IFIP Workshop 1996). Lecture Notes in Economics and Mathematical Systems, vol. 458, pp. 305–328. Springer, New York, NY (1998)

    Google Scholar 

  • Frauendorfer, K., Schürle, M.: Term structure models in multistage stochastic programming: Estimation and approximation. Ann. Oper. Res. 100, 189–209 (2001)

    Article  Google Scholar 

  • Frauendorfer, K., Schürle, M.: Management of non-maturing deposits by multistage stochastic programming. Eur. J. Oper. Res. 151, 602–616 (2003)

    Article  MATH  Google Scholar 

  • Frauendorfer, K., Schürle, M.: Refinancing mortgages in Switzerland. In: Wallace, S.W., Ziemba, W.T. (eds.) Applications of Stochastic Programming, MPS-SIAM Series in Optimization, pp. 445–469, Philadelphia (2005)

    Google Scholar 

  • Frauendorfer, K., Härtel, F.: On the goodness of discretizing diffusion processes for stochastic programming. Working paper, Institute of Operations Research, University of St. Gallen, St. Gallen (1995)

    Google Scholar 

  • Gassmann, H., Ziemba, W.T.: A tight upper bound for the expectation of a convex function of a multivariate random variable. Math. Program. Study 27, 39–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Hiriart-Urruty, J.-B., Ponstain, J.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Convexity and Duality in Optimization (Groningen, 1984). Lecture Notes in Economics and Mathematical Systems, vol. 256, pp. 37–70. Springer, New York (1985)

    Google Scholar 

  • Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches 3 ed. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Huang, C.C., Ziemba, W.T., Ben-Tal, A.: Bounds on the expectation of a convex function of a random variable: With applications to stochastic programming. Oper Res 25, 315–325 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, J.L.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 157–193 (1906)

    Article  Google Scholar 

  • Kall, P.: Stochastic programming with recourse: upper bounds and moment problems — a review. In: Guddat, J., Bank, B., Hollatz, H., Kall, P., Klatte, D., Kummer, B., Lommatzch, K., Tammer, K., Vlach, M., Zimmermann, K. (eds.) Advances in Mathematical Optimization, pp. 86–103. Akademie Verlag, Berlin, Germany (1988)

    Google Scholar 

  • Kall, P.: An upper bound for SLP using first and total second moments. Ann. Oper. Res. 30, 267–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn, D.: Generalized Bounds for Convex Multistage Stochastic Programs. Lecture Notes in Economics and Mathematical Systems, vol. 548. Springer, Berlin (2004)

    Google Scholar 

  • Madansky, A.: Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Stat. 30, 743–746 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Madansky, A.: Inequalities for stochastic linear programming problems. Manage. Sci. 6, 197–204 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Pardalos, P.M., Romeijn, H.E., Tuy, H.: Recent development and trends in global optimization. Comput. Appl. Math. 124, 209–228 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar, R.T., Wets, R.J.-B.: Nonanticipativity and \({L}^1\)-martingales in stochastic optimization problems. In: Stochastic Systems: Modeling, Identification and Optimization II, Mathematical Programming Study. North-Holland, Amsterdam 6, pp. 170–187 (1976a)

    Google Scholar 

  • Rockafellar, R.T., Wets, R.J.-B.: Stochastic convex programming: Relatively complete recourse and induced feasibility. SIAM J. Control Optim. 14(3), 574–589 (1976b)

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. A Series of Comprehensive Studies in Mathematics vol. 317. Springer, New York, NY (1998)

    Google Scholar 

  • Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3), 470–472 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • R.J.-B. Wets. Induced constraints for stochastic optimization problems. In: Balakrishnan, A. (ed.) Techniques of Optimization, pp. 433–443. Academic New York, NY (1972)

    Google Scholar 

Download references

Acknowledgments

Daniel Kuhn thanks the Swiss National Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Frauendorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frauendorfer, K., Kuhn, D., Schürle, M. (2010). Barycentric Bounds in Stochastic Programming: Theory and Application. In: Infanger, G. (eds) Stochastic Programming. International Series in Operations Research & Management Science, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1642-6_5

Download citation

Publish with us

Policies and ethics