Skip to main content

Iterated Local Search: Framework and Applications

  • Chapter
  • First Online:
Handbook of Metaheuristics

Abstract

The key idea underlying iterated local search is to focus the search not on the full space of all candidate solutions but on the solutions that are returned by some underlying algorithm, typically a local search heuristic. The resulting search behavior can be characterized as iteratively building a chain of solutions of this embedded algorithm. The result is also a conceptually simple metaheuristic that nevertheless has led to state-of-the-art algorithms for many computationally hard problems. In fact, very good performance is often already obtained by rather straightforward implementations of the metaheuristic. In addition, the modular architecture of iterated local search makes it very suitable for an algorithm engineering approach where, progressively, the algorithms’ performance can be further optimized. Our purpose here is to give an accessible description of the underlying principles of iterated local search and a discussion of the main aspects that need to be taken into account for a successful application of it. In addition, we review the most important applications of this method and discuss its relationship to other metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The reader can check that very little of what we say really uses this property, and in practice, many successful implementations of iterated local search have non-deterministic local searches or include memory.

  2. 2.

    Note that the local search finds neighbors stochastically; generally there is no efficient way to ensure that one has tested all the neighbors of any given s *.

  3. 3.

    Recall that to simplify this section’s presentation, the local search is assumed to have no memory.

  4. 4.

    Note that the best possible greedy initial solution need not be the best choice when combined with a local search. For example, in [47], it is shown that the combination of the Clarke–Wright starting tour (one of the best performing construction heuristics for the travelling salesman problem) with local search resulted in worse local optima than starting from random initial solutions when using 3-opt. Additionally, greedy algorithms that generate very high-quality initial solutions can be quite time consuming.

  5. 5.

    QAPLIB is accessible at http://www.seas.upenn.edu/qaplib

  6. 6.

    TSPLIB is accessible at www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

  7. 7.

    This question is not specific to ILS; it arises for all multi-start-based metaheuristics.

  8. 8.

    In early TS publications, proposals similar to the use of perturbations were put forward under the name random shakeup [32]. These procedures where characterized as a “randomized series of moves that leads the heuristic (away) from its customary path” [32]. The relationship to perturbations in ILS is obvious.

  9. 9.

    Indeed, in [33], Glover uses “strategic oscillation” whereby one cycles over these procedures: the simplest moves are used till there is no more improvement, and then progressively more advanced moves are used.

References

  1. Applegate, D., Cook, W.J., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Compt. 15(1), 82–92 (2003)

    Article  Google Scholar 

  2. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ (2006)

    Google Scholar 

  3. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford, UK (1996)

    Google Scholar 

  4. Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop scheduling. Manag. Sci. 44(2), 262–275 (1998)

    Article  Google Scholar 

  5. Battiti, R., Protasi, M.: Reactive search, a history-based heuristic for MAX-SAT. ACM J. Exp. Algorithmics 2 (1997)

    Google Scholar 

  6. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)

    Google Scholar 

  7. Baum, E.B.: Iterated descent: a better algorithm for local search in combinatorial optimization problems. Technical Report, Caltech, Pasadena, CA, (1986). manuscript

    Google Scholar 

  8. Baum, E.B.: Towards practical “neural” computation for combinatorial optimization problems. In: Denker, J. (ed.) Neural Networks for Computing, pp. 53–64, (1986). AIP conference proceedings, Snowbird, Utah

    Google Scholar 

  9. Baxter, J.: Local optima avoidance in depot location. J. Oper. Res. Soc. 32, 815–819, (1981)

    Google Scholar 

  10. Bennell, J.A., Potts, C.N., Whitehead, J.D. Local search algorithms for the min-max loop layout problem. J. Oper. Res. Soc. 53(10), 1109–1117 (2002)

    Article  Google Scholar 

  11. Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA J. Comput., 4(4), 387–411 (1992)

    Google Scholar 

  12. Brucker, P., Hurink, J., and Werner, F. Improving local search heuristics for some scheduling problems–-part I. Discrete Appl. Math. 65(1–3), 97–122 (1996)

    Article  Google Scholar 

  13. Brucker, P., Hurink, J., and Werner, F. Improving local search heuristics for some scheduling problems–-part II. Discrete Appl. Math. 72(1–2), 47–69 (1997)

    Article  Google Scholar 

  14. Caramia, M., Dell’Olmo, P.: Coloring graphs by iterated local search traversing feasible and infeasible solutions. Discrete Appl. Math. 156(2), 201–217 (2008)

    Article  Google Scholar 

  15. Carlier, J.: The one-machine sequencing problem. Eur. J. Oper. Res. 11:42–47 (1982)

    Article  Google Scholar 

  16. Cerný, V.: A thermodynamical approach to the traveling salesman problem. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  Google Scholar 

  17. Chiarandini, M., Stützle, T.: An application of iterated local search to the graph coloring problem. In: Mehrotra, A., Johnson, D.S., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125, Ithaca, NY (2002)

    Google Scholar 

  18. Codenotti, B., Manzini, G., Margara, L., Resta, G.: Perturbation: an efficient technique for the solution of very large instances of the Euclidean TSP. INFORMS J. Comput. 8(2), 125–133 (1996)

    Article  Google Scholar 

  19. Congram, R.K.: Polynomially Searchable Exponential Neighbourhoods for Sequencing Problems in Combinatorial Optimization. PhD thesis, Southampton University, Faculty of Mathematical Studies, Southampton, UK (2000)

    Google Scholar 

  20. Congram, R.K., Potts, C.N., van de Velde, S.: An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS J. Comput. 14(1), 52–67 (2002)

    Article  Google Scholar 

  21. Cook, W.J., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3), 233–248 (2003)

    Article  Google Scholar 

  22. Cordeau, J.-F., Laporte, G., Pasin, F.: An iterated local search heuristic for the logistics network design problem with single assignment. Int. J. Production Econ. 113(2), 626–640 (2008)

    Article  Google Scholar 

  23. Cordeau, J.-F., Laporte, G., Pasin, F.: Iterated tabu search for the car sequencing problem. Eur. J. Oper. Res. 191(3), 945–956 (2008)

    Article  Google Scholar 

  24. Cordón, O., Damas, S.: Image registration with iterated local search. J. Heuristics 12(1–2), 73–94 (2006)

    Article  Google Scholar 

  25. de Campos, L.M., Fernández-Luna, J.M., Miguel Puerta, J.: An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests. Int. J. Intell. Syst. 18, 221–235, (2003)

    Article  Google Scholar 

  26. den Besten, M.L., Stützle, T., Dorigo, M.: Design of iterated local search algorithms: An example application to the single machine total weighted tardiness problem. In: Boers, E.J.W. et al. (eds.) Applications of Evolutionary Computing. Lecture Notes in Computer Science, vol. 2037, pp. 441–452. Springer, Berlin (2001)

    Google Scholar 

  27. Dong, X., Huang, H., Chen, P.: An iterated local search algorithm for the permutation flowshop problem with total flowtime criterion. Comput. Opers. Res. 36(5), 1664–1669 (2009)

    Article  Google Scholar 

  28. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)

    Book  Google Scholar 

  29. Essafi, I., Mati, Y., Dauzère-Pèréz, S.: A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem. Comput. Oper. Res. 35(8), 2599–2616 (2008)

    Article  Google Scholar 

  30. Feo, T.A., Resende, M.G.C. Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995)

    Article  Google Scholar 

  31. Fonlupt, C., Robilliard, D., Preux, P., Talbi, E.-G.: Fitness landscape and performance of meta-heuristics. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 257–268. Kluwer, Boston, MA (1999)

    Chapter  Google Scholar 

  32. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  Google Scholar 

  33. Glover, F.: Tabu search – part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Google Scholar 

  34. Glover, F.: Tabu thresholding: improved search by nonmonotonic trajectories. ORSA J. Comput. 7(4), 426–442 (1995)

    Google Scholar 

  35. Glover, F.: Scatter search and path relinking. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 297–316. McGraw Hill, London, UK (1999)

    Google Scholar 

  36. Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston, MA (1997)

    Book  Google Scholar 

  37. Grosso, A., Della Croce, F., Tadei, R.: An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem. Oper. Res. Lett. 32(1), 68–72 (2004)

    Article  Google Scholar 

  38. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)

    Article  Google Scholar 

  39. Hashimoto, H., Yagiura, M., Ibaraki, T.: An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. Discrete Optim. 5(2), 434–456 (2008)

    Article  Google Scholar 

  40. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  Google Scholar 

  41. Hong, I., Kahng, A.B., Moon, B.R.: Improved large-step Markov chain variants for the symmetric TSP. J. Heuristics 3(1), 63–81 (1997)

    Article  Google Scholar 

  42. Hoos, H.H., Stützle, T.: Stochastic Local Search–-Foundations and Applications. Morgan Kaufmann, San Francisco, CA (2005)

    Google Scholar 

  43. Hu, T.C., Kahng, A.B., Tsao, C.-W.A.: Old bachelor acceptance: a new class of non-monotone threshold accepting methods. ORSA J. Comput. 7(4), 417–425 (1995)

    Google Scholar 

  44. Ibaraki, T., Imahori, S., Nonobe, K., Sobue, K., Uno, T., Yagiura, M.: An iterated local search algorithm for the vehicle routing problem with convex time penalty functions. Discrete Appl. Math. 156(11), 2050–2069 (2008)

    Article  Google Scholar 

  45. Jacobs, L.W., Brusco, M.J.: A local search heuristic for large set-covering problems. Naval Res. Logistics 42(7), 1129–1140 (1995)

    Article  Google Scholar 

  46. Johnson, D.S.: Local optimization and the travelling salesman problem. In: Proceedings of the 17th Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 443, pp. 446–461. Springer, Berlin (1990)

    Google Scholar 

  47. Johnson, D.S., McGeoch, L.A.: The travelling salesman problem: a case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, Chichester (1997)

    Google Scholar 

  48. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations, pp. 369–443. Kluwer, Dordrecht (2002)

    Google Scholar 

  49. Katayama, K., Narihisa, H.: Iterated local search approach using genetic transformation to the traveling salesman problem. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999), vol. 1, pp. 321–328. Morgan Kaufmann, San Francisco, CA (1999)

    Google Scholar 

  50. Katayama, K., Sadamatsu, M., Narihisa, H.: Iterated k-opt local search for the maximum clique problem. In: Cotta, C., van Hemert, J. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4446, pp. 84–95. Springer, Berlin (2007)

    Chapter  Google Scholar 

  51. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Technol. J. 49, 213–219 (1970)

    Google Scholar 

  52. Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  53. Kreipl, S.: A large step random walk for minimizing total weighted tardiness in a job shop. J. Scheduling 3(3), 125–138 (2000)

    Article  Google Scholar 

  54. Laurent, B., Hao, J.-K.: Iterated local search for the multiple depot vehicle scheduling problem. Comput. Industrial Eng. 57(1), 277–286 (2009)

    Article  Google Scholar 

  55. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  Google Scholar 

  56. Lourenço, H.R.: Job-shop scheduling: computational study of local search and large-step optimization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995)

    Article  Google Scholar 

  57. Lourenço, H.R.: A polynomial algorithm for a special case of the one–machine scheduling problem with time–lags. Technical Report Economic Working Papers Series, No. 339, Universitat Pompeu Fabra (1998)

    Google Scholar 

  58. Lourenço, H.R., Zwijnenburg, M.: Combining the large-step optimization with tabu-search: Application to the job-shop scheduling problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory & Applications, pp. 219–236. Kluwer, Boston, MA (1996)

    Google Scholar 

  59. Lozano, M., García-Martínez, C.: An evolutionary ILS-perturbation technique. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics, 5th International Workshop, HM 2008. Lecture Notes in Computer Science, vol. 5296, pp. 1–15. Springer, Berlin (2008)

    Google Scholar 

  60. Martin, O., Otto, S.W.: Partitioning of unstructured meshes for load balancing. Concurrency: Pract. Exp. 7, 303–314 (1995)

    Article  Google Scholar 

  61. Martin, O., Otto, S.W.: Combining simulated annealing with local search heuristics. Ann. Oper. Res. 63, 57–75 (1996)

    Article  Google Scholar 

  62. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5(3), 299–326 (1991)

    Google Scholar 

  63. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)

    Article  Google Scholar 

  64. Merz, P.: An iterated local search approach for minimum sum-of-squares clustering. In: Berthold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) Advances in Intelligent Data Analysis V, IDA 2003. Lecture Notes in Computer Science, vol. 2810 pp. 286–296. Springer, Berlin (2003)

    Google Scholar 

  65. Merz, P., Huhse, J.: An iterated local search approach for finding provably good solutions for very large TSP instances. In: Rudolph, G., Jansen, T., Lucas, S.M., Poloni, C., Beume, N. (eds.) Parallel Problem Solving from Nature–PPSN X. Lecture Notes in Computer Science, vol. 5199, pp. 929–939. Springer, Berlin (2008)

    Google Scholar 

  66. Mézard, M., Parisi, G., Virasoro, M.A.: Spin-Glass Theory and Beyond. Lecture Notes in Physics. vol. 9, World Scientific, Singapore (1987)

    Google Scholar 

  67. Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics. Springer, Berlin (2000)

    Google Scholar 

  68. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  Google Scholar 

  69. Moscato, P., Cotta, C.: Memetic algorithms. In: González, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Computer and Information Science Series, Chapter 27. Chapman & Hall/CRC, Boca Raton, FL (2007)

    Google Scholar 

  70. Mühlenbein, H.: Evolution in time and space – the parallel genetic algorithm. In: Rawlings, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 316–337. Morgan Kaufmann, San Mateo, CA (1991)

    Google Scholar 

  71. Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)

    Article  Google Scholar 

  72. Paquete, L., Stützle, T.: An experimental investigation of iterated local search for coloring graphs. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G. (eds.) Applications of Evolutionary Computing. Lecture Notes in Computer Science, vol. 2279, pp. 122–131. Springer, Berlin (2002)

    Google Scholar 

  73. Ribeiro, C.C., Aloise, D., Noronha, T.F., Rocha, C., Urrutia, S.: A hybrid heuristic for a multi-objective real-life car sequencing problem with painting and assembly line constraints. Eur. J. Oper. Res. 191(3), 981–992 (2008)

    Article  Google Scholar 

  74. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eur. J. Oper. Res. 179(3), 775–787 (2007)

    Article  Google Scholar 

  75. Rodríguez-Martín, I., Salazar González, J.J.: Solving a capacitated hub location problem. Eur. J. Oper. Res. 184(2), 468–479 (2008)

    Article  Google Scholar 

  76. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005)

    Article  Google Scholar 

  77. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

    Article  Google Scholar 

  78. Schiavinotto, T., Stützle, T.: The linear ordering problem: instances, search space analysis and algorithms. J. Math. Modelling Algorithms 3(4), 367–402 (2004)

    Article  Google Scholar 

  79. Schreiber, G.R., Martin, O.C.: Cut size statistics of graph bisection heuristics. SIAM J. Optim. 10(1), 231–251 (1999)

    Article  Google Scholar 

  80. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking optimization results using the ruin and recreate principle. J. Comput. Phys. 159(2), 139–171 (2000)

    Article  Google Scholar 

  81. Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX-SAT. In: Xiang, Y., Chaib-draa, B. (eds.) Advances in Artificial Intelligence, 16th Conference of the Canadian Society for Computational Studies of Intelligence. Lecture Notes in Computer Science, vol. 2671, pp. 129–144. Springer, Berlin (2003)

    Google Scholar 

  82. Stützle, T.: Applying iterated local search to the permutation flow shop problem. Technical Report AIDA–98–04, FG Intellektik, TU Darmstadt, Darmstadt, Germany, August (1998)

    Google Scholar 

  83. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)

    Article  Google Scholar 

  84. Stützle, T., Hoos, H.H.: Analysing the run-time behaviour of iterated local search for the travelling salesman problem. In: Hansen, P., Ribeiro, C. (eds.) Essays and Surveys on Metaheuristics, Operations Research/Computer Science Interfaces Series, pp. 589–611. Kluwer, Boston, MA (2001)

    Google Scholar 

  85. Stützle, T.: Local Search Algorithms for Combinatorial Problems: Analysis, Improvements, and New Applications. Dissertations in Artificial Intelligence, vol. 220. IOS Press, Amsterdam, The Netherlands (1999)

    Google Scholar 

  86. Taillard, é.D.: Comparison of iterative searches for the quadratic assignment problem. Location Sci. 3, 87–105 (1995)

    Article  Google Scholar 

  87. Tang, L., Wang, X.: Iterated local search algorithm based on a very large-scale neighborhood for prize-collecting vehicle routing problem. Int. J. Adv. Manufact. Technol. 29(11–12), 1246–1258 (2006)

    Article  Google Scholar 

  88. Thierens, D.: Population-based iterated local search: restricting the neighborhood search by crossover. In: Deb, K. et al. (eds.) Genetic and Evolutionary Computation–GECCO 2004, Part II. Lecture Notes in Computer Science, vol. 3102, pp. 234–245. Springer, Berlin (2004)

    Google Scholar 

  89. Voudouris, C., Tsang, E.: Guided local search. Technical Report Technical Report CSM-247, Department of Computer Science, University of Essex, Colchester, UK (1995)

    Google Scholar 

  90. Yagiura, M., Ibaraki, T.: Efficient 2 and 3-flip neighborhood search algorithms for the MAX SAT: experimental evaluation. J. Heuristics 7(5), 423–442 (2001)

    Article  Google Scholar 

  91. Yang, Y., Kreipl, S., Pinedo, M.: Heuristics for minimizing total weighted tardiness in flexible flow shops. J. Scheduling 3(2), 89–108 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

Olivier Martin acknowledges support from the Institut Universitaire de France, Helena Lourenço acknowledges support from the Ministerio de Educacion y Ciencia, Spain, MEC-SEJ2006-12291, and Thomas Stützle acknowledges support from the F.R.S.-FNRS, of which he is a Research Associate. This work was supported by the META-X project, an Action de Recherche Concertée funded by the Scientific Research Directorate of the French Community of Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena R. Lourenço .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lourenço, H.R., Martin, O.C., Stützle, T. (2010). Iterated Local Search: Framework and Applications. In: Gendreau, M., Potvin, JY. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 146. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1665-5_12

Download citation

Publish with us

Policies and ethics