Skip to main content

Circular Integrated Optical Microresonators: Analytical Methods and Computational Aspects

  • Chapter
  • First Online:
Book cover Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

Abstract

This chapter discusses an ab initio frequency domain model of circular microresonators, built on the physical notions that commonly enter the description of the resonator functioning in terms of interaction between fields in the circular cavity with the modes supported by the straight bus waveguides. Quantitative evaluation of this abstract model requires propagation constants associated with the cavity/bend segments, and scattering matrices, that represent the wave interaction in the coupler regions. These quantities are obtained by an analytical (2-D) or numerical (3-D) treatment of bent waveguides, along with spatial coupled mode theory (CMT) for the couplers. The required CMT formulation is described in detail. Also, quasi-analytical approximations for fast and accurate computation of the resonator spectra are discussed. The formalism discussed in this chapter provides valuable insight into the functioning of the resonators, and it is suitable for practical device design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the time domain, the Q factor \(Q = \omega/(2\delta\omega)\) is defined as the ratio of the optical power stored in the cavity to the cycle averaged power radiated out of the cavity [42]. The larger the Q factor, the longer the optical field is trapped inside the cavity.

  2. 2.

    The arbitrariness in the choice of R renders the actual value of \(\gamma\) virtually meaningless [19]. Only the product \(\gamma R\) is relevant.

References

  1. Vahala, K. Optical microcavities. World Scientific Singapore (2004)

    Google Scholar 

  2. Michelotti, F., Driessen, A., et al. (eds.) Microresonators as building blocks for VLSI photonics, volume 709 of AIP conference proceedings (2004)

    Google Scholar 

  3. Heebner, J., Grover, R., et al. Optical micro-resonators: Theory, fabrication, and applications. Springer (2007)

    Google Scholar 

  4. Landobasa, Y. M., Darmawan, S., et al. Matrix analysis of 2-D microresonator lattice optical filters. IEEE J. Quantum Electron. 41, 1410–1418 (2005)

    Article  Google Scholar 

  5. Popović, M. A., Manolatou, C., et al. Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. Opt. Express 14, 1208–1222 (2006)

    Article  Google Scholar 

  6. Stokes, L. F., Chodorow, M., et al. All single mode fiber resonator. Opt. Lett. 7, 288–290 (1982)

    Article  Google Scholar 

  7. Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. IEE Electron. Lett. 36, 321–322 (2000)

    Article  Google Scholar 

  8. Hammer, M., Hiremath, K.R., et al. Analytical approaches to the description of optical microresonator devices. In Michelotti, F., Driessen, A., et al. (eds.), Microresonators as building blocks for VLSI photonics, volume 709 of AIP conference proceedings, 48–71 (2004)

    Google Scholar 

  9. Okamoto, K. Fundamentals of Optical Waveguides. Academic Press, USA (2000)

    Google Scholar 

  10. Klunder, D.J.W., Krioukov, E., et al. Vertically and laterally waveguide-coupled cylindrical microresonators in Si 3 N 4 on SiO 2 technology. Appl. Phys. B. 73, 603–608 (2001)

    Article  Google Scholar 

  11. Klunder, D.J.W., Balistreri, M.L.M., et al. Detailed analysis of the intracavity phenomena inside a cylindrical microresonator. IEEE J. Lightwave Technol. 20, 519–529 (2002)

    Article  Google Scholar 

  12. Rowland, D.R., Love, J.D. Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proc.: Optoelectron. 140, 177–188 (1993)

    Article  Google Scholar 

  13. Chin, M.K., Ho, S.T. Design and modeling of waveguide coupled single mode microring resonator. IEEE J. Lightwave Technol. 16, 1433–1446 (1998)

    Article  Google Scholar 

  14. Cusmai, G., Morichetti, F., et al. Circuit-oriented modelling of ring-resonators. Opt. Quantum Electron. 37, 343–358 (2005)

    Article  Google Scholar 

  15. Vassallo, C. Optical waveguide concepts. Elsevier, Amsterdam (1991)

    Google Scholar 

  16. Hall, D.G., Thompson, B.J., (eds.) Selected papers on coupled-mode theory in guided-wave optics, volume MS 84 of SPIE milestone series. SPIE Optical Engineering Press, Bellingham, Washington USA (1993)

    Google Scholar 

  17. Hiremath, K.R., Stoffer, R., et al. Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory. Opt. Commun. 257, 277–297 (2006)

    Article  Google Scholar 

  18. Stoffer, R., Hiremath, K.R., et al. Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory. Opt. Commun. 256, 46–67 (2005)

    Article  Google Scholar 

  19. Hiremath, K.R., Hammer, M., et al. Analytic approach to dielectric optical bent slab waveguides. Opt. Quantum Electron. 37, 37–61 (2005)

    Article  Google Scholar 

  20. Prkna, L., Hubálek, M., et al. Field modeling of circular microresonators by film mode matching. IEEE J. Sel. Top. Quantum Electron. 11, 217–223 (2005)

    Article  Google Scholar 

  21. Stoffer, R., Hiremath, K.R., et al. Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides. In Michelotti, F., Driessen, A., et al. (eds.), Microresonators as building blocks for VLSI photonics, volume 709 of AIP conference proceedings, 366–377 (2004)

    Google Scholar 

  22. Van, V., Absil, P., et al. Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model. IEEE J. Lightwave Technol. 19, 1734–1739 (2001)

    Article  Google Scholar 

  23. Absil, P.P., Hryniewicz, J.V., et al. Compact microring notch filters. IEEE Photonics Technol. Lett. 14, 398–400 (2000)

    Article  Google Scholar 

  24. Chu, S.T., Little, B.E., et al. Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters. IEEE Photonics Technol. Lett. 11, 1423–1425 (1999)

    Article  Google Scholar 

  25. Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    Article  Google Scholar 

  26. Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 998–1005 (1997)

    Article  Google Scholar 

  27. Grover, R., Van, V., et al. Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters. IEEE J. Lightwave Technol. 20, 900–905 (2002)

    Article  Google Scholar 

  28. Hryniewicz, J.V., Absil, P.P., et al. Higher order filter response in coupled microring resonators. IEEE Photonics Technol. Lett. 12, 320–322 (2000)

    Article  Google Scholar 

  29. Chu, S.T., Little, B.E., et al. An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Photonics Technol. Lett. 11, 691–693 (1999)

    Article  Google Scholar 

  30. Little, B. E., Chu, S. T., et al. Microring resonator arrays for VLSI photonics. IEEE Photonics Technol. Lett. 12, 323–325 (2000)

    Article  Google Scholar 

  31. Manolatou, C., Khan, M. J., et al. Coupling of modes analysis of resonant channel add drop filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999)

    Article  Google Scholar 

  32. Prkna, L., Čtyroký, J., et al. Ring microresonator as a photonic structure with complex eigenfrequency. Opt. Quantum Electron. 36, 259–269 (2004)

    Article  Google Scholar 

  33. Taflove, A., Hagness, S.C. Computational electrodynamis: The finite difference time domain method. Artech House, Norwood, MA, USA, 2nd edition (2000)

    MATH  Google Scholar 

  34. Hagness, S.C., Rafizadeh, D., et al. FDTD microcavity simulations: Design and experimental realization of waveguide coupled single mode ring and whispering gallery mode disk resonator. IEEE J. Lightwave Technol. 15, 2154–2165 (1997)

    Article  Google Scholar 

  35. Koos, C., Fujii, M., et al. FDTD-modelling of dispersive nonlinear ring resonators: Accuracy studies and experiments. IEEE J. Quantum Electron. 42, 1215–1223 (2006)

    Article  Google Scholar 

  36. Sacks, Z.S., Lee, J.-F. A finite-element time-domain method using prism elements for microwave cavities. IEEE Trans. Electromagn. Compat. 37, 519–527 (1995)

    Article  Google Scholar 

  37. Carpes Jr., W.P., Pichon, L., et al. Efficient analysis of resonant cavities by finite element method in the time domain. IEE Proc. Microw. Antennas Propag. 147, 53–57 (2000)

    Article  Google Scholar 

  38. Ji, X., Lu, T., et al. Discontinuous galerkin time domain (DGTD) methods for the study of 2-D waveguide-coupled microring resonators. IEEE J. Lightwave Technol. 23, 3864 – 3874 (2005)

    Article  Google Scholar 

  39. Boriskina, S.V., Benson, T.M., et al. Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators. IEEE J. Lightwave Technol. 20, 1563–1572 (2002)

    Article  Google Scholar 

  40. Boriskina, S.V., Benson, T.M., et al. Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators. Opt. Quantum Electron. 35, 545–559 (2003)

    Article  Google Scholar 

  41. Boriskina, S.V., Nosich, A.I. Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide. IEEE Trans. Microw. Theory Tech. 47, 224–231 (1999)

    Article  Google Scholar 

  42. Jackson, J.D. Classical electrodynamics. John Wiley and Sons, Inc., 3rd edition (1998)

    Google Scholar 

  43. Lewin, L., Chang, D.C., et al. Electromagnetic waves and curved structures. Peter Peregrinus Ltd. (On behalf of IEE), Stevenage, England (1977)

    Google Scholar 

  44. Pennings, E.C.M. Bends in optical ridge waveguides, modelling and experiment. Ph.D. thesis, Delft University, The Netherlands (1990)

    Google Scholar 

  45. Abramowitz, M., Stegun, I.A. Handbook of mathematical functions (applied mathematics Series 55). National Bureau of Standards, Washington, DC (1964)

    Google Scholar 

  46. Press, W.H., Teukolsky, S.A., et al. Numerical recipes in C. Cambridge University Press, 2nd edition (1992)

    Google Scholar 

  47. Hiremath, K.R. Coupled mode theory based modeling and analysis of circular optical microresonators. Ph.D. thesis, University of Twente, The Netherlands (2005)

    Google Scholar 

  48. Stoffer, R. Uni- and Omnidirectional simulation tools for integrated optics. Ph.D. thesis, University of Twente, Enschede, The Netherlands (2001)

    Google Scholar 

  49. Sudbø, A.S. Film mode matching: a versatile numerical method for vector mode fields calculations in dielectric waveguides. Pure Appl. Opt. 2, 211–233 (1993)

    Article  Google Scholar 

  50. Prkna, L., Hubálek, M., et al. Vectorial eigenmode solver for bent waveguides based on mode matching. IEEE Photonics Technol. Lett. 16, 2057–2059 (2004)

    Article  Google Scholar 

  51. Hiremath, K.R., Hammer, M. Modeling of tuning of microresonator filters by perturbational evaluation of cavity mode phase shifts. IEEE J. Lightwave Technol. 25, 3760–3765 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out as a part of the project “NAIS” (IST-2000-28018), funded by the European Commission. K. R. Hiremath also acknowledges support by the DFG (German Research Council) Research Training Group “Analysis, Simulation and Design of Nanotechnological Processes,” University of Karlsruhe. The authors thank R. Stoffer for his hard work on the 3-D simulations. They are grateful to H. J. W. M. Hoekstra, E. van Groesen, and their colleagues in the NAIS project for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirankumar Hiremath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Hiremath, K., Hammer, M. (2010). Circular Integrated Optical Microresonators: Analytical Methods and Computational Aspects. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_2

Download citation

Publish with us

Policies and ethics