Skip to main content

Different Methods for Culturing Biofilms In Vitro

  • Chapter
  • First Online:
Biofilm Infections

Abstract

The field of biofilm microbiology, while by no means new, has been experiencing significant “growing pains” as more and more researchers become involved. One of the underlying reasons is the lack of standardized methods for culturing biofilm communities. Many times, the culturing format will be unique to the study in question, resulting in difficulties when other labs attempt to confirm results produced by another lab. Another issue has been the limited utility of different culturing methods for the specific research questions being asked. For example, culturing formats designed to be accessible to microscopy are not always suited for other types of analyses, such as harvesting biofilm biomass for biochemical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banin E, Lozinski A, Brady KM et al (2008) The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:16761–16766

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635

    Article  CAS  PubMed  Google Scholar 

  • Borriello G, Werner E, Roe F et al (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664

    Article  CAS  PubMed  Google Scholar 

  • Ceri H, Olson ME, Stremick C et al (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  PubMed  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    CAS  PubMed  Google Scholar 

  • Cucarella C, Tormo MA, Knecht E et al (2002) Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186

    Article  PubMed  Google Scholar 

  • Garo E, Eldridge GR, Goering, MG et al (2007) Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob Agents Chemother 51:1813–1817

    Article  CAS  PubMed  Google Scholar 

  • Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007a) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2007b) A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents. FEMS Microbiol Lett 272:172–181

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2005a) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2005b) High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol 5:53

    Google Scholar 

  • Harrison JJ, Wade WD, Akierman S et al (2009) The chromosomal toxin yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother. doi:10.1128/AAC.00043-09

    Google Scholar 

  • Harrison JJ, Ceri H, Yerly J et al (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proced Online 8:194–215

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Turner RJ, Joo DA et al (2008) Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:2870–2881

    Article  CAS  PubMed  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401

    Article  CAS  PubMed  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(Pt 10):2395–2407

    CAS  PubMed  Google Scholar 

  • Kirisits MJ, Parsek MR (2006) Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8:1841–1849

    Article  CAS  PubMed  Google Scholar 

  • Kirisits MJ, Prost L, Starkey M et al (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821

    Article  CAS  PubMed  Google Scholar 

  • Knobloch JK, Bartscht K, Sabottke A et al (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183:2624–2633

    Article  CAS  PubMed  Google Scholar 

  • Landry RM, An D, Hupp JT et al (2006) Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 59:142–151

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Bansal T, Jayaraman A et al (2007) Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol 73:4100–4109

    Article  CAS  PubMed  Google Scholar 

  • Moreau-Marquis S, Bomberger JM, Anderson GG et al (2008) The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am J Physiol Lung Cell Mol Physiol 295:L25–37

    Google Scholar 

  • Morley D (1945) A simple method for testing the sensitivity of wound bacteria to penicillin and sulphathiazole by use of impregnated blotting paper discs. J Pathol Bacteriol 57:379–382

    Article  CAS  Google Scholar 

  • Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12:789–796

    Article  CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998a) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998b) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Palmer RJ (1999) Microscopy flowcells: perfusion chambers for real-time study of biofilms. Methods Enzymol 310:160–166

    Article  PubMed  Google Scholar 

  • Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Pierce CG, Uppuluri P, Tristan AR et al (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3:1494–1500

    Article  CAS  PubMed  Google Scholar 

  • Pitts B, Willse A, McFeters GA et al (2001) A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. J Appl Microbiol 91:110–117

    Article  CAS  PubMed  Google Scholar 

  • Ramey BE, Parsek MR (2005) Growing and analyzing biofilms in fermenters. Curr Protoc Microbiol Chapter 1: Unit 1B.3

    Google Scholar 

  • Rani SA, Pitts B, Beyenal H et al (2007) Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233

    Article  CAS  PubMed  Google Scholar 

  • Rickard AH, McBain AJ, Stead AT et al (2004) Shear rate moderates community diversity in freshwater biofilms. Appl Environ Microbiol 70:7426–7435

    Article  CAS  PubMed  Google Scholar 

  • Schaefer AL, Greenberg EP, Parsek MR (2001) Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay. In: Doyle RJ (ed) Methods in enzymology. Academic, London, pp 41–47

    Google Scholar 

  • Sokurenko EV, Vogel V, Thomas WE (2008) Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread? Cell Host Microbe 4:314–323

    Article  CAS  PubMed  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Rani SA, Gjersing E et al (2007) Observations of cell cluster hollowing in Staphylococcus epidermidis biofilms. Lett Appl Microbiol 44:454–457

    Article  CAS  PubMed  Google Scholar 

  • Tu Quoc PH, Genevaux P, Pajunen M et al (2007) Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 75:1079–1088

    Article  CAS  Google Scholar 

  • Valle J, Toledo-Arana A, Berasain C et al (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    Article  CAS  PubMed  Google Scholar 

  • Willcock, L, Gilbert P, Holah J et al (2000) A new technique for the performance evaluation of clean-in-place disinfection of biofilms. J Ind Microbiol Biotechnol 25:235–241

    Article  CAS  Google Scholar 

  • Werner E, Roe F, Bugnicourt A et al (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196

    Article  CAS  PubMed  Google Scholar 

  • Yarwood JM, Bartels DJ. Volper EM et al (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850

    Google Scholar 

  • Zelver N, Hamilton M, Goeres D et al (2001) Development of a standardized antibiofilm test. Methods Enzymol 337:363–376

    Article  CAS  PubMed  Google Scholar 

  • Zelver N, Hamilton M, Pitts B et al (1999) Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol 310:608–628

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Parsek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peterson, S.B. et al. (2011). Different Methods for Culturing Biofilms In Vitro. In: Bjarnsholt, T., Jensen, P., Moser, C., Høiby, N. (eds) Biofilm Infections. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6084-9_15

Download citation

Publish with us

Policies and ethics