Skip to main content

Ubiquitin Family Members in the Regulation of the Tumor Suppressor p53

  • Chapter
Conjugation and Deconjugation of Ubiquitin Family Modifiers

Part of the book series: Subcellular Biochemistry ((SCBI,volume 54))

Abstract

It is commonly assumed that the p53 tumor suppressor pathway is deregulated in most if not all human cancers. Thus, the past two decades have witnessed intense efforts to identify and characterize the growth-suppressive properties of p53 as well as the proteins and mechanisms involved in regulating p53 activity. In retrospect, it may therefore not be surprising that p53 was one of the very first mammalian proteins that were identified as physiologically relevant substrate proteins of the ubiquitin-proteasome system. Since then, plenty of evidence has been accumulated that p53 is in part controlled by canonical (i.e., resulting in proteasome-mediated degradation) and noncanonical (i.e., nonproteolytic) ubiquitination and by modification with the ubiquitin family members SUMO-1 and NED 8. In this chapter, we will largely neglect the plethora of mechanisms that have been reported to be involved in the regulation of p53 ubiquitination but will focus on the enzymes and components of the respective conjugation systems that have been implicated in p53 modification and how the respective modifications (ubiquitin, SUMO-1, NED 8) may impinge on p53 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278:261–3.

    CAS  PubMed  Google Scholar 

  2. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979; 17:43–52.

    CAS  PubMed  Google Scholar 

  3. DeLeo AB, Jay G, Appella E et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 1979; 76:2420–4.

    CAS  PubMed  Google Scholar 

  4. Baker SJ, Fearon ER, Nigro JM et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989; 244:217–21.

    CAS  PubMed  Google Scholar 

  5. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989; 57:1083–93.

    CAS  PubMed  Google Scholar 

  6. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408:307–10.

    CAS  PubMed  Google Scholar 

  7. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003; 13:49–58.

    CAS  PubMed  Google Scholar 

  8. Scheffner M, Whitaker NJ. Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system. Semin Cancer Biol 2003; 13:59–67.

    CAS  PubMed  Google Scholar 

  9. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8:275–83.

    CAS  PubMed  Google Scholar 

  10. Kruse JP, Gu W. Modes of p53 regulation. Cell 2009; 137:609–22.

    CAS  PubMed  Google Scholar 

  11. Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell 2009; 137:413–31.

    CAS  PubMed  Google Scholar 

  12. Toledo F, Bardot B. Cancer: Three birds with one stone. Nature 2009; 460:466–7.

    CAS  PubMed  Google Scholar 

  13. Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta 2009; 1787:414–20.

    CAS  PubMed  Google Scholar 

  14. Bargonetti J, Friedman PN, Kern SE et al. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 1991; 65:1083–91.

    CAS  PubMed  Google Scholar 

  15. Kern SE, Kinzler KW, Bruskin A et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 1991; 252:1708–11.

    CAS  PubMed  Google Scholar 

  16. Pavletich NP, Chambers KA, Pabo CO. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev 1993; 7:2556–64.

    CAS  PubMed  Google Scholar 

  17. Cho Y, Gorina S, Jeffrey PD et al. Crystal structure of a p53 tumor suppressor-D NA complex: understanding tumorigenic mutations. Science 1994; 265:346–55.

    CAS  PubMed  Google Scholar 

  18. Lu H, Levine AJ. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc Natl Acad Sci USA 1995; 92:5154–8.

    CAS  PubMed  Google Scholar 

  19. Thut CJ, Chen JL, Klemm R et al. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 1995; 267:100–4.

    CAS  PubMed  Google Scholar 

  20. Xiao H, Pearson A, Coulombe B et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 1994; 14:7013–24.

    CAS  PubMed  Google Scholar 

  21. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90:595–606.

    CAS  PubMed  Google Scholar 

  22. Lill NL, Grossman SR, Ginsberg D et al. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387:823–7.

    CAS  PubMed  Google Scholar 

  23. Hupp TR, Meek DW, Midgley CA et al. Regulation of the specific DNA binding function of p53. Cell 1992; 71:875–86.

    CAS  PubMed  Google Scholar 

  24. Lee W, Harvey TS, Yin Y et al. Solution structure of the tetrameric minimum transforming domain of p53. Nat Struct Biol 1994; 1:877–90.

    CAS  PubMed  Google Scholar 

  25. Jeffrey PD, Gorina S, Pavletich NP. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 1995; 267:1498–502.

    CAS  PubMed  Google Scholar 

  26. Bourdon JC, Fernandes K, Murray-Z mijewski F et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005; 19:2122–37.

    CAS  PubMed  Google Scholar 

  27. Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 4:1689–94.

    CAS  PubMed  Google Scholar 

  28. Kastan MB, Onyekwere O, Sidransky D et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51:6304–11.

    CAS  PubMed  Google Scholar 

  29. Fritsche M, Haessler C, Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 1993; 8:307–18.

    CAS  PubMed  Google Scholar 

  30. Graeber TG, Peterson JF, Tsai M et al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 1994; 14:6264–77.

    CAS  PubMed  Google Scholar 

  31. Linke SP, Clarkin KC, Di Leonardo A et al. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 1996; 10:934–47.

    CAS  PubMed  Google Scholar 

  32. Reich NC, Oren M, Levine AJ. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol Cell Biol 1983; 3:2143–50.

    CAS  PubMed  Google Scholar 

  33. Hubbert NL, Sedman SA, Schiller JT. Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J Virol 1992; 66:6237–41.

    CAS  PubMed  Google Scholar 

  34. Scheffner M, Werness BA, Huibregtse JM et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63:1129–36.

    CAS  PubMed  Google Scholar 

  35. Chowdary DR, Dermody JJ, Jha KK et al. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol Cell Biol 1994; 14:1997–2003.

    CAS  PubMed  Google Scholar 

  36. Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res 1996; 56:2649–54.

    CAS  PubMed  Google Scholar 

  37. Haupt Y, Maya R, Kazaz A et al. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387:296–9.

    CAS  PubMed  Google Scholar 

  38. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387:299–303.

    CAS  PubMed  Google Scholar 

  39. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420:25–7.

    CAS  PubMed  Google Scholar 

  40. Fang S, Jensen JP, Ludwig RL et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275:8945–51.

    CAS  PubMed  Google Scholar 

  41. Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 2000; 19:1473–6.

    CAS  PubMed  Google Scholar 

  42. Jones SN, Roe AE, Donehower LA et al. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378:206–8.

    CAS  PubMed  Google Scholar 

  43. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378:203–6.

    CAS  PubMed  Google Scholar 

  44. Francoz S, Froment P, Bogaerts S et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci USA 2006; 103:3232–7.

    CAS  PubMed  Google Scholar 

  45. Grier JD, Xiong S, Elizondo-Fraire AC et al. Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol 2006; 26:192–8.

    CAS  PubMed  Google Scholar 

  46. Marine JC, Francoz S, Maetens M et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 2006; 13:927–34.

    CAS  PubMed  Google Scholar 

  47. Xiong S, Van Pelt CS, Elizondo-Fraire AC et al. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci USA 2006; 103:3226–31.

    CAS  PubMed  Google Scholar 

  48. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6:909–23.

    CAS  PubMed  Google Scholar 

  49. Itahana K, Mao H, Jin A et al. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 2007; 12:355–66.

    CAS  PubMed  Google Scholar 

  50. Kussie PH, Gorina S, Marechal V et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274:948–53.

    CAS  PubMed  Google Scholar 

  51. Bottger A, Bottger V, Garcia-E cheverria C et al. Molecular characterization of the hdm2-p53 interaction. J Mol Biol 1997; 269:744–56.

    CAS  PubMed  Google Scholar 

  52. Bottger A, Bottger V, Sparks A et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 1997; 7:860–9.

    CAS  PubMed  Google Scholar 

  53. Vassilev LT, Vu BT, Graves B et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844–8.

    CAS  PubMed  Google Scholar 

  54. Chi SW, Lee SH, Kim DH et al. Structural details on mdm2-p53 interaction. J Biol Chem 2005; 280:38795–802.

    CAS  PubMed  Google Scholar 

  55. Momand J, Zambetti GP, Olson DC et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69:1237–45.

    CAS  PubMed  Google Scholar 

  56. Oliner JD, Pietenpol JA, Thiagalingam S et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362:857–60.

    CAS  PubMed  Google Scholar 

  57. Saville MK, Sparks A, Xirodimas DP et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 2004; 279:42169–81.

    CAS  PubMed  Google Scholar 

  58. Linares LK, Hengstermann A, Ciechanover A et al. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 2003; 100:12009–14.

    CAS  PubMed  Google Scholar 

  59. Grossman SR, Deato ME, Brignone C et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 2003; 300:342–4.

    CAS  PubMed  Google Scholar 

  60. Glockzin S, Ogi FX, Hengstermann A et al. Involvement of the DNA repair protein hHR23 in p53 degradation. Mol Cell Biol 2003; 23:8960–9.

    CAS  PubMed  Google Scholar 

  61. Brignone C, Bradley KE, Kisselev AF et al. A post-ubiquitination role for MDM2 and hHR23A in the p53 degradation pathway. Oncogene 2004; 23:4121–9.

    CAS  PubMed  Google Scholar 

  62. Kaur M, Pop M, Shi D et al. hHR23B is required for genotoxic-specific activation of p53 and apoptosis. Oncogene 2006; 26:1231–7.

    PubMed  Google Scholar 

  63. Nakamura S, Roth JA, Mukhopadhyay T. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol Cell Biol 2000; 20:9391–8.

    CAS  PubMed  Google Scholar 

  64. Rodriguez MS, Desterro JM, Lain S et al. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 2000; 20:8458–67.

    CAS  PubMed  Google Scholar 

  65. Feng L, Lin T, Uranishi H et al. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 2005; 25:5389–95.

    CAS  PubMed  Google Scholar 

  66. Krummel KA, Lee CJ, Toledo F et al. The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 2005; 102:10188–93.

    CAS  PubMed  Google Scholar 

  67. Chan WM, Mak MC, Fung TK et al. Ubiquitination of p53 at multiple sites in the DNA-binding domain. Mol Cancer Res 2006; 4:15–25.

    CAS  PubMed  Google Scholar 

  68. Le Cam L, Linares LK, Paul C et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 2006; 127:775–88.

    PubMed  Google Scholar 

  69. Kruse JP, Gu W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J Biol Chem 2009; 284:3250–63.

    CAS  PubMed  Google Scholar 

  70. Lee EW, Lee MS, Camus S et al. Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO J 2009; 28:2100–13.

    CAS  PubMed  Google Scholar 

  71. Wu X, Bayle JH, Olson D et al. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993; 7:1126–32.

    CAS  PubMed  Google Scholar 

  72. Kawai H, Wiederschain D, Yuan ZM. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 2003; 23:4939–47.

    CAS  PubMed  Google Scholar 

  73. Meulmeester E, Frenk R, Stad R et al. Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol Cell Biol 2003; 23:4929–38.

    CAS  PubMed  Google Scholar 

  74. Shvarts A, Steegenga WT, Riteco N et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 1996; 15:5349–57.

    CAS  PubMed  Google Scholar 

  75. Marine JC, Jochemsen AG. Mdmx and Mdm2: brothers in arms? Cell Cycle 2004; 3:900–4.

    CAS  PubMed  Google Scholar 

  76. Stad R, Ramos YF, Little N et al. Hdmx stabilizes Mdm2 and p53. J Biol Chem 2000; 275:28039–44.

    CAS  PubMed  Google Scholar 

  77. Little NA, Jochemsen AG. Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene 2001; 20:4576–80.

    CAS  PubMed  Google Scholar 

  78. Parant J, Chavez-Reyes A, Little NA et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29:92–5.

    CAS  PubMed  Google Scholar 

  79. Finch RA, Donoviel DB, Potter D et al. mdmx is a negative regulator of p53 activity in vivo. Cancer Res 2002; 62:3221–5.

    CAS  PubMed  Google Scholar 

  80. Migliorini D, Lazzerini Denchi E, Danovi D et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 2002; 22:5527–38.

    CAS  PubMed  Google Scholar 

  81. Badciong JC, Haas AL. MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 2002; 277:49668–75.

    CAS  PubMed  Google Scholar 

  82. Sharp DA, Kratowicz SA, Sank MJ et al. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J Biol Chem 1999; 274:38189–96.

    CAS  PubMed  Google Scholar 

  83. Tanimura S, Ohtsuka S, Mitsui K et al. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 1999; 447:5–9.

    CAS  PubMed  Google Scholar 

  84. Singh RK, Iyappan S, Scheffner M. Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2. J Biol Chem 2007; 282:10901–7.

    CAS  PubMed  Google Scholar 

  85. Stad R, Little NA, Xirodimas DP et al. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2001; 2:1029–34.

    CAS  PubMed  Google Scholar 

  86. Migliorini D, Danovi D, Colombo E et al. Hdmx recruitment into the nucleus by Hdm2 is essential for its ability to regulate p53 stability and transactivation. J Biol Chem 2002; 277:7318–23.

    CAS  PubMed  Google Scholar 

  87. de Graaf P, Little NA, Ramos YF et al. Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem 2003; 278:38315–24.

    PubMed  Google Scholar 

  88. Pan Y, Chen J. MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 2003; 23:5113–21.

    CAS  PubMed  Google Scholar 

  89. Quelle DE, Zindy F, Ashmun RA et al. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83:993–1000.

    CAS  PubMed  Google Scholar 

  90. Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92:713–23.

    CAS  PubMed  Google Scholar 

  91. Stott FJ, Bates S, James MC et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17:5001–14.

    CAS  PubMed  Google Scholar 

  92. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92:725–34.

    CAS  PubMed  Google Scholar 

  93. Xirodimas D, Saville MK, Edling C et al. Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene 2001; 20:4972–83.

    CAS  PubMed  Google Scholar 

  94. Lohrum MA, Ashcroft M, Kubbutat MH et al. Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol 2000; 2:179–81.

    CAS  PubMed  Google Scholar 

  95. Weber JD, Taylor LJ, Roussel MF et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1:20–6.

    CAS  PubMed  Google Scholar 

  96. Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 1999; 3:579–91.

    CAS  PubMed  Google Scholar 

  97. Tao W, Levine AJ. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 1999; 96:6937–41.

    CAS  PubMed  Google Scholar 

  98. Llanos S, Clark PA, Rowe J et al. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol 2001; 3:445–52.

    CAS  PubMed  Google Scholar 

  99. Honda R, Yasuda H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 1999; 18:22–7.

    CAS  PubMed  Google Scholar 

  100. Midgley CA, Desterro JM, Saville MK et al. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 2000; 19:2312–23.

    CAS  PubMed  Google Scholar 

  101. Ringshausen I, O’Shea CC, Finch AJ et al. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006; 10:501–14.

    CAS  PubMed  Google Scholar 

  102. Leng RP, Lin Y, Ma W et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112:779–91.

    CAS  PubMed  Google Scholar 

  103. Dornan D, Wertz I, Shimizu H et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429:86–92.

    CAS  PubMed  Google Scholar 

  104. Oliner JD, Kinzler KW, Meltzer PS et al. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358:80–3.

    CAS  PubMed  Google Scholar 

  105. Leach FS, Tokino T, Meltzer P et al. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 1993; 53:2231–4.

    CAS  PubMed  Google Scholar 

  106. Dornan D, Bheddah S, Newton K et al. COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res 2004; 64:7226–30.

    CAS  PubMed  Google Scholar 

  107. Duan W, Gao L, Druhan LJ et al. Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J Natl Cancer Inst 2004; 96:1718–21.

    CAS  PubMed  Google Scholar 

  108. Schwarz SE, Rosa JL, Scheffner M. Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 1998; 273:12148–54.

    CAS  PubMed  Google Scholar 

  109. Chen D, Brooks CL, Gu W. ARF-BP1 as a potential therapeutic target. Br J Cancer 2006; 94:1555–8.

    CAS  PubMed  Google Scholar 

  110. Chen D, Kon N, Li M et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005; 121:1071–83.

    CAS  PubMed  Google Scholar 

  111. Zhong Q, Gao W, Du F et al. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiq-uitination of Mcl-1 and regulates apoptosis. Cell 2005; 121:1085–95.

    CAS  PubMed  Google Scholar 

  112. Adhikary S, Marinoni F, Hock A et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 2005; 123:409–21.

    CAS  PubMed  Google Scholar 

  113. Rajendra R, Malegaonkar D, Pungaliya P et al. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 2004; 279:36440–4.

    CAS  PubMed  Google Scholar 

  114. Weger S, Hammer E, Heilbronn R. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 2005; 579:5007–12.

    CAS  PubMed  Google Scholar 

  115. Yang X, Li H, Zhou Z et al. Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem 2009; 284:18588–92.

    CAS  PubMed  Google Scholar 

  116. Yang W, Rozan LM, McDonald ER, 3rd et al. CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation. J Biol Chem 2007; 282:3273–81.

    CAS  PubMed  Google Scholar 

  117. Yamasaki S, Yagishita N, Sasaki T et al. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase’ synoviolin’. EMBO J 2007; 26:113–22.

    CAS  PubMed  Google Scholar 

  118. Xia Y, Padre RC, De Mendoza TH et al. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-T rCP. Proc Natl Acad Sci USA 2009; 106:2629–34.

    CAS  PubMed  Google Scholar 

  119. Sun L, Shi L, Li W et al. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation. Proc Natl Acad Sci USA 2009; 106:10195–200.

    CAS  PubMed  Google Scholar 

  120. Allton K, Jain AK, Herz HM et al. Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci USA 2009; 106:11612–6.

    CAS  PubMed  Google Scholar 

  121. Esser C, Scheffner M, Hohfeld J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 2005; 280:27443–8.

    CAS  PubMed  Google Scholar 

  122. Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol 2007; 27:8284–95.

    CAS  PubMed  Google Scholar 

  123. Muller P, Hrstka R, Coomber D et al. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 2008; 27:3371–83.

    CAS  PubMed  Google Scholar 

  124. Huibregtse JM, Scheffner M, Howley PM. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 1993; 13:775–84.

    CAS  PubMed  Google Scholar 

  125. Scheffner M, Huibregtse JM, Vierstra RD et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75:495–505.

    CAS  PubMed  Google Scholar 

  126. Pan H, Griep AE. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev 1994; 8:1285–99.

    CAS  PubMed  Google Scholar 

  127. Simonson SJ, Difilippantonio MJ, Lambert PF. Two distinct activities contribute to human papillomavirus 16 E6’s oncogenic potential. Cancer Res 2005; 65:8266–73.

    CAS  PubMed  Google Scholar 

  128. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002; 2:342–50.

    PubMed  Google Scholar 

  129. Beer-Romero P, Glass S, Rolfe M. Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 1997; 14:595–602.

    CAS  PubMed  Google Scholar 

  130. Kim Y, Cairns MJ, Marouga R et al. E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes. Cancer Gene Ther 2003; 10:707–16.

    CAS  PubMed  Google Scholar 

  131. Kelley ML, Keiger KE, Lee CJ et al. The global transcriptional effects of the human papillomavirus E6 protein in cervical carcinoma cell lines are mediated by the E6AP ubiquitin ligase. J Virol 2005; 79:3737–47.

    CAS  PubMed  Google Scholar 

  132. Hengstermann A, D’Silva MA, Kuballa P et al. Growth suppression induced by downregulation of E6-AP expression in human papillomavirus-positive cancer cell lines depends on p53. J Virol 2005; 79:9296–300.

    CAS  PubMed  Google Scholar 

  133. Querido E, Blanchette P, Yan Q et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 2001; 15:3104–17.

    CAS  PubMed  Google Scholar 

  134. Muller S, Dobner T. The adenovirus E1B-55K oncoprotein induces SUMO modification of p53. Cell Cycle 2008; 7:754–58.

    CAS  PubMed  Google Scholar 

  135. Boutell C, Everett RD. The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol Chem 2003; 278:36596–602.

    CAS  PubMed  Google Scholar 

  136. Holowaty MN, Zeghouf M, Wu H et al. Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 2003; 278:29987–94.

    CAS  PubMed  Google Scholar 

  137. Sato Y, Kamura T, Shirata N et al. Degradation of phosphorylated p53 by viral protein-E CS E3 ligase complex. PLoS Pathog 2009; 5:e1000530.

    PubMed  Google Scholar 

  138. Cai QL, Knight JS, Verma SC et al. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2006; 2:e116.

    PubMed  Google Scholar 

  139. Saha A, Murakami M, Kumar P et al. Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2. J Virol 2009; 83:4652–69.

    CAS  PubMed  Google Scholar 

  140. Lee HR, Toth Z, Shin YC et al. Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J Virol 2009; 83:6739–47.

    CAS  PubMed  Google Scholar 

  141. Roth J, Dobbelstein M, Freedman DA et al. Nucleocytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998; 17:554–64.

    CAS  PubMed  Google Scholar 

  142. Stommel JM, Marchenko ND, Jimenez GS et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 1999; 18:1660–72.

    CAS  PubMed  Google Scholar 

  143. Tao W, Levine AJ. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 1999; 96:3077–80.

    CAS  PubMed  Google Scholar 

  144. Boyd SD, Tsai KY, Jacks T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2000; 2:563–8.

    CAS  PubMed  Google Scholar 

  145. Li M, Brooks CL, Wu-Baer F et al. Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science 2003; 302:1972–5.

    CAS  PubMed  Google Scholar 

  146. Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell 2006; 21:307–15.

    CAS  PubMed  Google Scholar 

  147. Carter S, Bischof O, Dejean A et al. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 2007; 9:428–35.

    CAS  PubMed  Google Scholar 

  148. Marchenko ND, Wolff S, Erster S et al. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 2007; 26:923–34.

    CAS  PubMed  Google Scholar 

  149. Zacchi P, Gostissa M, Uchida T et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 2002; 419:853–7.

    CAS  PubMed  Google Scholar 

  150. Zheng H, You H, Zhou XZ et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 2002; 419:849–53.

    CAS  PubMed  Google Scholar 

  151. Siepe D, Jentsch S. Prolyl isomerase Pin1 acts as a switch to control the degree of substrate ubiquitylation. Nat Cell Biol 2009; 11:967–72.

    CAS  PubMed  Google Scholar 

  152. Laine A, Topisirovic I, Zhai D et al. Regulation of p53 localization and activity by Ubc13. Mol Cell Biol 2006; 26:8901–13.

    CAS  PubMed  Google Scholar 

  153. Topisirovic I, Gutierrez GJ, Chen M et al. Control of p53 multimerization by Ubc13 is JNK-regulated. Proc Natl Acad Sci USA 2009; 106:12676–81.

    CAS  PubMed  Google Scholar 

  154. Laine A, Ronai Z. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 2007; 26:1477–83.

    CAS  PubMed  Google Scholar 

  155. Stevenson LF, Sparks A, Allende-Vega N et al. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 2007; 26:976–86.

    CAS  PubMed  Google Scholar 

  156. Dayal S, Sparks A, Jacob J et al. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 2009; 284:5030–41.

    CAS  PubMed  Google Scholar 

  157. Li M, Chen D, Shiloh A et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002; 416:648–53.

    CAS  PubMed  Google Scholar 

  158. Li M, Brooks CL, Kon N et al. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 2004; 13:879–86.

    CAS  PubMed  Google Scholar 

  159. Yamaguchi T, Kimura J, Miki Y et al. The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). J Biol Chem 2007; 282:33943–8.

    CAS  PubMed  Google Scholar 

  160. Zhang D, Zaugg K, Mak TW et al. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 2006; 126:529–42.

    CAS  PubMed  Google Scholar 

  161. Cummins JM, Rago C, Kohli M et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 2004; 428:1 p following 486.

    Google Scholar 

  162. Tang J, Qu LK, Zhang J et al. Critical role for Daxx in regulating Mdm2. Nat Cell Biol 2006; 8:855–62.

    CAS  PubMed  Google Scholar 

  163. Song MS, Song SJ, Kim SY et al. The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-D AXX-HAUSP complex. EMBO J 2008; 27:1863–74.

    CAS  PubMed  Google Scholar 

  164. Meulmeester E, Maurice MM, Boutell C et al. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell 2005; 18:565–76.

    CAS  PubMed  Google Scholar 

  165. Meulmeester E, Pereg Y, Shiloh Y et al. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 2005; 4:1166–70.

    CAS  PubMed  Google Scholar 

  166. Stommel JM, Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 2004; 23:1547–56.

    CAS  PubMed  Google Scholar 

  167. Huang DT, Ayrault O, Hunt HW et al. E2-RING expansion of the NED 8 cascade confers specificity to cullin modification. Mol Cell 2009; 33:483–95.

    CAS  PubMed  Google Scholar 

  168. Pan ZQ, Kentsis A, Dias DC et al. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 2004; 23:1985–97.

    CAS  PubMed  Google Scholar 

  169. Xirodimas DP, Saville MK, Bourdon JC et al. Mdm2-mediated NED 8 conjugation of p53 inhibits its transcriptional activity. Cell 2004; 118:83–97.

    CAS  PubMed  Google Scholar 

  170. Handeli S, Weintraub H. The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M and G1. Cell 1992; 71:599–611.

    CAS  PubMed  Google Scholar 

  171. Abida WM, Nikolaev A, Zhao W et al. FBXO11 promotes the neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 2006; 282:1797–804.

    PubMed  Google Scholar 

  172. Geoffroy MC, Hay RT. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 2009; 10:564–8.

    CAS  PubMed  Google Scholar 

  173. Gostissa M, Hengstermann A, Fogal V et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 1999; 18:6462–71.

    CAS  PubMed  Google Scholar 

  174. Rodriguez MS, Desterro JM, Lain S et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18:6455–61.

    CAS  PubMed  Google Scholar 

  175. Kahyo T, Nishida T, Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 2001; 8:713–8.

    CAS  PubMed  Google Scholar 

  176. Nelson V, Davis GE, Maxwell SA. A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis. Apoptosis 2001; 6:221–34.

    CAS  PubMed  Google Scholar 

  177. Schmidt D, Muller S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 2002; 99:2872–7.

    CAS  PubMed  Google Scholar 

  178. Bischof O, Schwamborn K, Martin N et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 2006; 22:783–94.

    CAS  PubMed  Google Scholar 

  179. Wu SY, Chiang CM. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J 2009; 28:1246–59.

    CAS  PubMed  Google Scholar 

  180. Lee MH, Lee SW, Lee EJ et al. SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat Cell Biol 2006; 8:1424–31.

    CAS  PubMed  Google Scholar 

  181. Yuan H, Zhou J, Deng M et al. Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Res 2009.

    Google Scholar 

  182. Zhang Y, Xiong Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 2001; 292:1910–5.

    CAS  PubMed  Google Scholar 

  183. Shimizu H, Burch LR, Smith AJ et al. The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J Biol Chem 2002; 277:28446–58.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Scheffner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Xirodimas, D.P., Scheffner, M. (2010). Ubiquitin Family Members in the Regulation of the Tumor Suppressor p53. In: Groettrup, M. (eds) Conjugation and Deconjugation of Ubiquitin Family Modifiers. Subcellular Biochemistry, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6676-6_10

Download citation

Publish with us

Policies and ethics