Skip to main content

Contribution of the -Omics Era to Our Understanding of Preinvasive Disease and Progression to Cancer

  • Chapter
  • First Online:
  • 372 Accesses

Abstract

The term -omics refers to a biological field of study in which large scale network analysis techniques are used to interrogate various biological processes. Omics based technologies have been widely applied to studies of primary cancers. More recently, improvements in these techniques, such as increased sensitivity and decreased amounts of input sample has allowed their utilisation in the study of p­remalignant and preinvasive disease. Many premalignant lesions are known to persist for lengthy periods of time before progressing to cancer in only a small proportion of patients. Identification of the key genes and molecular mechanisms involved in progression may aid in identifying patients at high risk of progression and play a role in determining potential targets for prevention or treatment. This chapter outlines the current contribution of -omics technologies to our understanding of preinvasive and premalignant lesions of various types of adenocarcinomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  2. Cheung VG, Morley M, Aguilar F et al (1999) Making and reading microarrays. Nat Genet 21:15–19

    Article  PubMed  CAS  Google Scholar 

  3. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  4. Wicker N, Carles A, Mills IG et al (2007) A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH. BMC Genomics 8:84

    Article  PubMed  Google Scholar 

  5. van den Ijssel P, Tijssen M, Chin SF et al (2005) Human and mouse oligonucleotide-based array CGH. Nucleic Acids Res 33:e192

    Article  PubMed  Google Scholar 

  6. Simon R, Mirlacher M, Sauter G (2005) Tissue microarrays. Meth Mol Med 114:257–268

    CAS  Google Scholar 

  7. Simon R, Mirlacher M, Sauter G (2004) Tissue microarrays. Meth Mol Med 97:377–389

    CAS  Google Scholar 

  8. Chen W, Foran DJ (2006) Advances in cancer tissue microarray technology: Towards improved understanding and diagnostics. Anal Chim Acta 564:74–81

    Article  PubMed  CAS  Google Scholar 

  9. Simon R, Mirlacher M, Sauter G (2003) Tissue microarrays in cancer diagnosis. Expert Rev Mol Diagn 3:421–430

    Article  PubMed  CAS  Google Scholar 

  10. Selaru FM, Zou T, Xu Y et al (2002) Global gene expression profiling in Barrett’s esophagus and esophageal cancer: a comparative analysis using cDNA microarrays. Oncogene 21:475–478

    Article  PubMed  CAS  Google Scholar 

  11. Xu Y, Selaru FM, Yin J et al (2002) Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res 62:3493–3497

    PubMed  CAS  Google Scholar 

  12. Wang S, Zhan M, Yin J et al (2006) Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene 25:3346–3356

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto H, Horiuchi S, Adachi Y et al (2004) Expression of ets-related transcriptional factor E1AF is associated with tumor progression and over-expression of matrilysin in human gastric cancer. Carcinogenesis 25:325–332

    Article  PubMed  CAS  Google Scholar 

  14. Hovanes K, Li TW, Munguia JE et al (2001) Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 28:53–57

    PubMed  CAS  Google Scholar 

  15. Watts GS, Tran NL, Berens ME et al (2007) Identification of Fn14/TWEAK receptor as a potential therapeutic target in esophageal adenocarcinoma. Int J Cancer 121:2132–2139

    Article  PubMed  CAS  Google Scholar 

  16. Tran NL, McDonough WS, Donohue PJ et al (2003) The human Fn14 receptor gene is up-regulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors. Am J Pathol 162:1313–1321

    Article  PubMed  CAS  Google Scholar 

  17. Lynch CN, Wang YC, Lund JK et al (1999) TWEAK induces angiogenesis and proliferation of endothelial cells. J Biol Chem 274:8455–8459

    Article  PubMed  CAS  Google Scholar 

  18. Milano F, Jorritsma T, Rygiel AM et al (2008) Expression pattern of immune suppressive cytokines and growth factors in oesophageal adenocarcinoma reveal a tumour immune escape-promoting microenvironment. Scand J Immunol 68:616–623

    Article  PubMed  CAS  Google Scholar 

  19. Kimchi ET, Posner MC, Park JO et al (2005) Progression of Barrett’s metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res 65:3146–3154

    PubMed  CAS  Google Scholar 

  20. Gomes LI, Esteves GH, Carvalho AF et al (2005) Expression profile of malignant and nonmalignant lesions of esophagus and stomach: differential activity of functional modules related to inflammation and lipid metabolism. Cancer Res 65:7127–7136

    Article  PubMed  CAS  Google Scholar 

  21. Greenawalt DM, Duong C, Smyth GK et al (2007) Gene expression profiling of esophageal cancer: comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int J Cancer 120:1914–1921

    Article  PubMed  CAS  Google Scholar 

  22. Brabender J, Lord RV, Metzger R et al (2003) Differential SPARC mRNA expression in Barrett’s oesophagus. Br J Cancer 89:1508–1512

    Article  PubMed  CAS  Google Scholar 

  23. Said N, Najwer I, Motamed K (2007) Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. Am J Pathol 170:1054–1063

    Article  PubMed  CAS  Google Scholar 

  24. Barth PJ, Moll R, Ramaswamy A (2005) Stromal remodeling and SPARC (secreted protein acid rich in cysteine) expression in invasive ductal carcinomas of the breast. Virchows Arch 446:532–536

    Article  PubMed  CAS  Google Scholar 

  25. Buttar NS, Wang KK, Leontovich O et al (2002) Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology 122:1101–1112

    Article  PubMed  CAS  Google Scholar 

  26. Heath EI, Canto MI, Piantadosi S et al (2007) Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomized trial. J Natl Cancer Inst 99:545–557

    Article  PubMed  CAS  Google Scholar 

  27. Hao Y, Triadafilopoulos G, Sahbaie P et al (2006) Gene expression profiling reveals stromal genes expressed in common between Barrett’s esophagus and adenocarcinoma. Gastroenterology 131:925–933

    Article  PubMed  CAS  Google Scholar 

  28. Boussioutas A, Li H, Liu J et al (2003) Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res 63:2569–2577

    PubMed  CAS  Google Scholar 

  29. Lao-Sirieix P, Boussioutas A, Kadri SR et al (2009) Non-endoscopic screening biomarkers for Barrett’s oesophagus: from microarray analysis to the clinic. Gut 58:1451–1459

    Article  PubMed  CAS  Google Scholar 

  30. Feber A, Xi L, Luketich JD et al (2008) MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135:255–260, discussion 60

    Article  PubMed  CAS  Google Scholar 

  31. Luthra R, Singh RR, Luthra MG et al (2008) MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 27:6667–6678

    Article  PubMed  CAS  Google Scholar 

  32. Maru DM, Singh RR, Hannah C et al (2009) MicroRNA-196a is a potential marker of progression during Barrett’s metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am J Pathol 174:1940–1948

    Article  PubMed  CAS  Google Scholar 

  33. Walch AK, Zitzelsberger HF, Bruch J et al (2000) Chromosomal imbalances in Barrett’s adenocarcinoma and the metaplasia–dysplasia-carcinoma sequence. Am J Pathol 156:555–566

    Article  PubMed  CAS  Google Scholar 

  34. Riegman PH, Vissers KJ, Alers JC et al (2001) Genomic alterations in malignant transformation of Barrett’s esophagus. Cancer Res 61:3164–3170

    PubMed  CAS  Google Scholar 

  35. Gonzalez MV, Artimez ML, Rodrigo L et al (1997) Mutation analysis of the p53, APC, and p16 genes in the Barrett’s oesophagus, dysplasia, and adenocarcinoma. J Clin Pathol 50:212–217

    Article  PubMed  CAS  Google Scholar 

  36. Wu TT, Watanabe T, Heitmiller R et al (1998) Genetic alterations in Barrett esophagus and adenocarcinomas of the esophagus and esophagogastric junction region. Am J Pathol 153:287–294

    Article  PubMed  CAS  Google Scholar 

  37. Zhuang Z, Vortmeyer AO, Mark EJ et al (1996) Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res 56:1961–1964

    PubMed  CAS  Google Scholar 

  38. Croft J, Parry EM, Jenkins GJ et al (2002) Analysis of the premalignant stages of Barrett’s oesophagus through to adenocarcinoma by comparative genomic hybridization. Eur J Gastroenterol Hepatol 14:1179–1186

    Article  PubMed  Google Scholar 

  39. Lai LA, Paulson TG, Li X et al (2007) Increasing genomic instability during premalignant neoplastic progression revealed through high resolution array-CGH. Genes Chromosomes Cancer 46:532–542

    Article  PubMed  CAS  Google Scholar 

  40. Paulson TG, Galipeau PC, Xu L et al (2008) p16 mutation spectrum in the premalignant condition Barrett’s esophagus. PLoS ONE 3:e3809

    Article  PubMed  Google Scholar 

  41. Barrett MT, Sanchez CA, Galipeau PC et al (1996) Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene 13:1867–1873

    PubMed  CAS  Google Scholar 

  42. Galipeau PC, Prevo LJ, Sanchez CA et al (1999) Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst 91:2087–2095

    Article  PubMed  CAS  Google Scholar 

  43. Zhao J, Chang AC, Li C et al (2007) Comparative proteomics analysis of Barrett metaplasia and esophageal adenocarcinoma using two-dimensional liquid mass mapping. Mol Cell Proteomics 6:987–999

    Article  PubMed  CAS  Google Scholar 

  44. Correa P (1988) A human model of gastric carcinogenesis. Cancer Res 48:3554–3560

    PubMed  CAS  Google Scholar 

  45. Leung WK, Lin SR, Ching JY et al (2004) Factors predicting progression of gastric intestinal metaplasia: results of a randomised trial on Helicobacter pylori eradication. Gut 53:1244–1249

    Article  PubMed  CAS  Google Scholar 

  46. MacLennan AJ, Orringer MB, Beer DG (1999) Identification of intestinal-type Barrett’s metaplasia by using the intestine-specific protein villin and esophageal brush cytology. Mol Carcinog 24:137–143

    Article  PubMed  CAS  Google Scholar 

  47. Wright NA, Hoffmann W, Otto WR et al (1997) Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett 408:121–123

    Article  PubMed  CAS  Google Scholar 

  48. Lefebvre O, Chenard MP, Masson R et al (1996) Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 274:259–262

    Article  PubMed  CAS  Google Scholar 

  49. Taupin D, Pedersen J, Familari M et al (2001) Augmented intestinal trefoil factor (TFF3) and loss of pS2 (TFF1) expression precedes metaplastic differentiation of gastric epithelium. Lab Invest 81:397–408

    Article  PubMed  CAS  Google Scholar 

  50. Meireles SI, Cristo EB, Carvalho AF et al (2004) Molecular classifiers for gastric cancer and nonmalignant diseases of the gastric mucosa. Cancer Res 64:1255–1265

    Article  PubMed  CAS  Google Scholar 

  51. Guo J, Miao Y, Xiao B et al (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657

    Article  PubMed  CAS  Google Scholar 

  52. Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44:556–561

    Article  PubMed  CAS  Google Scholar 

  53. Tsukamoto Y, Uchida T, Karnan S et al (2008) Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J Pathol 216:471–482

    Article  PubMed  CAS  Google Scholar 

  54. Gorringe KL, Boussioutas A, Bowtell DD (2005) Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization. Genes Chromosomes Cancer 42:247–259

    Article  PubMed  CAS  Google Scholar 

  55. Busuttil RA, Boussioutas A (2009) Intestinal metaplasia: a premalignant lesion involved in gastric carcinogenesis. J Gastroenterol Hepatol 24:193–201

    Article  PubMed  CAS  Google Scholar 

  56. Lee K, Kye M, Jang JS et al (2004) Proteomic analysis revealed a strong association of a high level of alpha1-antitrypsin in gastric juice with gastric cancer. Proteomics 4:3343–3352

    Article  PubMed  CAS  Google Scholar 

  57. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  58. Dove-Edwin I, Thomas HJ (2001) Review article: the prevention of colorectal cancer. Aliment Pharmacol Ther 15:323–336

    Article  PubMed  CAS  Google Scholar 

  59. Notterman DA, Alon U, Sierk AJ et al (2001) Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61:3124–3130

    PubMed  CAS  Google Scholar 

  60. Nosho K, Yamamoto H, Adachi Y et al (2005) Gene expression profiling of colorectal adenomas and early invasive carcinomas by cDNA array analysis. Br J Cancer 92:1193–1200

    Article  PubMed  CAS  Google Scholar 

  61. Muller N, Reinacher-Schick A, Baldus S et al (2002) Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells. Oncogene 21:6049–6058

    Article  PubMed  Google Scholar 

  62. Suzuki E, Ota T, Tsukuda K et al (2004) nm23-H1 reduces in vitro cell migration and the liver metastatic potential of colon cancer cells by regulating myosin light chain phosphorylation. Int J Cancer 108:207–211

    Article  PubMed  CAS  Google Scholar 

  63. Lin YM, Furukawa Y, Tsunoda T et al (2002) Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene 21:4120–4128

    Article  PubMed  CAS  Google Scholar 

  64. Diosdado B, van de Wiel MA (2009) Terhaar Sive Droste JS et al. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 101:707–714

    Article  PubMed  CAS  Google Scholar 

  65. Aslam MI, Taylor K, Pringle JH et al (2009) MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 96:702–710

    Article  PubMed  CAS  Google Scholar 

  66. Smith G, Carey FA, Beattie J et al (2002) Mutations in APC, Kirsten-ras, and p53-alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A 99:9433–9438

    Article  PubMed  CAS  Google Scholar 

  67. Leslie A, Pratt NR, Gillespie K et al (2003) Mutations of APC, K-ras, and p53 are associated with specific chromosomal aberrations in colorectal adenocarcinomas. Cancer Res 63:4656–4661

    PubMed  CAS  Google Scholar 

  68. Leslie A, Stewart A, Baty DU et al (2006) Chromosomal changes in colorectal adenomas: relationship to gene mutations and potential for clinical utility. Genes Chromosomes Cancer 45:126–135

    Article  PubMed  CAS  Google Scholar 

  69. Habermann JK, Paulsen U, Roblick UJ et al (2007) Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer 46:10–26

    Article  PubMed  CAS  Google Scholar 

  70. Tsafrir D, Bacolod M, Selvanayagam Z et al (2006) Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res 66:2129–2137

    Article  PubMed  CAS  Google Scholar 

  71. Sheffer M, Bacolod MD, Zuk O et al (2009) Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci U S A 106:7131–7136

    Article  PubMed  CAS  Google Scholar 

  72. Carvalho B, Postma C, Mongera S et al (2009) Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut 58:79–89

    Article  PubMed  CAS  Google Scholar 

  73. AJCC (2002) Cancer staging manual, 6th edn. Springer, New York

    Google Scholar 

  74. Birkenkamp-Demtroder K, Christensen LL, Olesen SH et al (2002) Gene expression in colorectal cancer. Cancer Res 62:4352–4363

    PubMed  CAS  Google Scholar 

  75. Frederiksen CM, Knudsen S, Laurberg S et al (2003) Classification of Dukes’ B and C colorectal cancers using expression arrays. J Cancer Res Clin Oncol 129:263–271

    PubMed  Google Scholar 

  76. Glockner SC, Dhir M, Yi JM et al (2009) Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res 69:4691–4699

    Article  PubMed  CAS  Google Scholar 

  77. Oberwalder M, Zitt M, Wontner C et al (2008) SFRP2 methylation in fecal DNA – a marker for colorectal polyps. Int J Colorectal Dis 23:15–19

    Article  PubMed  Google Scholar 

  78. Chen WD, Han ZJ, Skoletsky J et al (2005) Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 97:1124–1132

    Article  PubMed  CAS  Google Scholar 

  79. Jass JR, Filipe MI (1979) A variant of intestinal metaplasia associated with gastric carcinoma: a histochemical study. Histopathology 3:191–199

    Article  PubMed  CAS  Google Scholar 

  80. Young J, Jass JR (2006) The case for a genetic predisposition to serrated neoplasia in the colorectum: hypothesis and review of the literature. Cancer Epidemiol Biomark Prev 15:1778–1784

    Article  CAS  Google Scholar 

  81. Young J, Jenkins M, Parry S et al (2007) Serrated pathway colorectal cancer in the population: genetic consideration. Gut 56:1453–1459

    Article  PubMed  Google Scholar 

  82. Caruso M, Moore J, Goodall GJ et al (2009) Over-expression of cathepsin E and trefoil factor 1 in sessile serrated adenomas of the colorectum identified by gene expression analysis. Virchows Arch 454:291–302

    Article  PubMed  CAS  Google Scholar 

  83. Kim K, Park U, Wang J et al (2008) Gene profiling of colonic serrated adenomas by using oligonucleotide microarray. Int J Colorectal Dis 23:569–580

    Article  PubMed  Google Scholar 

  84. Schmitz KJ, Hey S, Schinwald A et al (2009) Differential expression of microRNA 181b and microRNA 21 in hyperplastic polyps and sessile serrated adenomas of the colon. Virchows Arch 455:49–54

    Article  PubMed  CAS  Google Scholar 

  85. Tinker AV, Boussioutas A, Bowtell DD (2006) The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 9:333–339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Miss Christina Tucci, Dr Nicholas Clemons and Dr Catherine Mitchell for providing the images used in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Boussioutas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Busuttil, R.A., Boussioutas, A. (2011). Contribution of the -Omics Era to Our Understanding of Preinvasive Disease and Progression to Cancer. In: Fitzgerald, R. (eds) Pre-Invasive Disease: Pathogenesis and Clinical Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6694-0_6

Download citation

Publish with us

Policies and ethics