Skip to main content

The Physical and Chemical Effects of Ultrasound

  • Chapter
  • First Online:
Ultrasound Technologies for Food and Bioprocessing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Ultrasound refers to sound waves above the human hearing range. The physical effects of ultrasound include the turbulence associated with cavitational bubble collapse, microjetting, and the streaming movement of cavitational microbubbles to the pressure antinodes of a standing wave field. These physical effects are strongest near to fluid/solid and fluid/fluid boundaries, which mean that ultrasound is extremely effective in enhancing heat and mass transfer within such boundary layers. Chemical effects arise from free radical production during transient cavitational collapse of bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashokkumar, M., and Grieser, F. (2004). Single bubble sonoluminescence-a chemist’s overview. ChemPhysChem, 5(4), 439–448.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., Lee, J., Kentish, S., and Grieser, F. (2007). Bubbles in an acoustic field: An overview. Ultrasonics Sonochemistry, 14(4), 470–475.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., and Mason, T. J. (2007). Sonochemistry. Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY, Wiley.

    Google Scholar 

  • Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., and Versteeg, C. (2008). Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9(2), 155–160.

    Article  CAS  Google Scholar 

  • Bondy, C., and Sollner, K. (1935). On the mechanism of emulsification by ultrasonic waves. Transactions of the Faraday Society, 31, 835–842.

    Article  CAS  Google Scholar 

  • Brennen, C. E. (1995). Cavitation and Bubble Dynamics. New York, NY, Oxford University Press.

    Google Scholar 

  • Cioffi, M., and Wolfersberger, M. G. (1983). Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure. Tissue and Cell, 15(5), 781–803.

    Article  CAS  Google Scholar 

  • Crum, L. A. (1980). Measurements of the growth of air bubbles by rectified diffusion. Journal of the Acoustical Society of America, 68, 203–211.

    Article  Google Scholar 

  • Crum, L. A., and Eller, A. I. (1970). Motion of bubbles in a stationary sound field. Journal of the Acoustical Society of America, 48, 181–189.

    Article  Google Scholar 

  • Crum, L. A., and Nordling, D. A. (1972). Velocity of transient cavities in an acoustic stationary wave. Journal of the Acoustical Society of America, 52(1), 294–301.

    Article  Google Scholar 

  • Dibbern, E. M., Toublan, F. J., and Suslick, K. S. J. (2006). Formation and characterization of polyglutamate core-shell microspheres. Journal of the American Chemical Society, 128(20), 6540–6541.

    Article  CAS  Google Scholar 

  • Elder, S. A. (1959). Cavitation microstreaming. Journal of the Acoustical Society of America, 31, 54–64.

    Article  Google Scholar 

  • Hagenson, L. C., and Doraiswamy, L. K. (1997). Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chemical Engineering Science, 53(1), 131–148.

    Article  Google Scholar 

  • Hyeon, T., Fang, M., and Suslick, K. S. (1996). Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. Journal of the American Chemical Society, 118(23), 5492–5493.

    Article  CAS  Google Scholar 

  • Hacias, K.J., Cormier, G.J., Nourie, S.M., and Kubel, E.J. (1997). Guide to Acid, Alkaline, Emulsion, and Ultrasonic Cleaning. ASM International, Ohio, USA.

    Google Scholar 

  • Inazu, K., Nagata, Y., and Maeda, Y. (1993). Decomposition of chlorinated hydrocarbons in aqueous solutions by ultrasonic irradiation. Chemistry Letters, 1, 57–60.

    Article  Google Scholar 

  • Kimura, T., Sakamoto, T., Leveque, J.-M., Sohmiya, H., Fujita, M., and Ikeda, S. (1996). Standardization of ultrasonic power for sonochemical reaction. Ultrasonics Sonochemistry, 3(3), S157–S161.

    Article  CAS  Google Scholar 

  • Kotronarou, A., Mills, G., and Hoffmann, M. R. (1992). Decomposition of parathion in aqueous solution by ultrasonic irradiation. Environmental Science and Technology, 26(7), 1460–1462.

    Article  CAS  Google Scholar 

  • Laborde, J. L., Bouyer, C., Caltagirone, J. P., and Gerard, A. (1998). Acoustic bubble cavitation at low frequencies. Ultrasonics, 36(1–5), 589–594.

    Article  Google Scholar 

  • Lamminen, M. O., Walker, H. W., and Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1–2), 213–223.

    Article  CAS  Google Scholar 

  • Lang, R. J. (1962). Ultrasonic atomization of liquids. Journal of the Acoustic Society of America, 34, 6–9.

    Article  Google Scholar 

  • Lee, J., Kentish, S., and Ashokkumar, M. (2005a). Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. Journal of Physical Chemistry B, 109(30), 14595–14598.

    Article  CAS  Google Scholar 

  • Lee, J., Kentish, S. E., and Ashokkumar, M. (2005b). The effect of surface-active solutes on bubble coalescence in the presence of ultrasound. Journal of Physical Chemistry B, 109(11), 5095–5099.

    Article  CAS  Google Scholar 

  • Lee, J., Tuziuti, T., Yasui, K., Kentish, S., Grieser, F., Ashokkumar, M., and Iida, Y. (2007). Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. Journal of Physical Chemistry C, 111(51), 19015–19023.

    Article  CAS  Google Scholar 

  • Leighton, T. G. (1994). The acoustic bubble. San Diego, CA, Academic.

    Google Scholar 

  • Li, M. K., and Fogler, H. S. (1978). Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. Journal of Fluid Mechanics, 88(3), 499–511.

    Article  CAS  Google Scholar 

  • Lin, H.-Y., and Thomas James, L. (2004). Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound. Langmuir: The ACS Journal of Surfaces and Colloids, 20(15), 6100–6106.

    CAS  Google Scholar 

  • Luche, J. L. (1998). Synthetic organic sonochemistry. New York, NY, Plenum Press.

    Google Scholar 

  • Luther, S., Mettin, R., Koch, P., and Lauterborn, W. (2001). Observation of acoustic cavitation bubbles at 2250 frames per second. Ultrasonics Sonochemistry, 8(3), 159–162.

    Article  CAS  Google Scholar 

  • Mason, T. J., and Lorimer, J. P. (2002). Applied sonochemistry. Weinheim, Wiley–VCH.

    Google Scholar 

  • Mettin, R., Luther, S., Ohl, C.-D., and Lauterborn, W. (1999). Acoustic cavitation structures and simulations by a particle model. Journal of Histochemistry and Cytochemistry, 47(5), 25–29.

    Google Scholar 

  • Price, G. J. (1990). The use of ultrasound for the controlled degradation of polymer solutions. Advances in Sonochemistry, 1, 231–287.

    CAS  Google Scholar 

  • Ratoarinoro, C. F., Wilhelm, A. M., Berlan, J., and Delmas, H. (1995). Power measurement in sonochemistry. Ultrasonics Sonochemistry, 2(1), S43–S47.

    Article  CAS  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., and Lyng, J. G. (2009). Characterisation of volatile compounds generated in milk by high intensity ultrasound. International Dairy Journal, 19, 269–272.

    Article  CAS  Google Scholar 

  • Riley, N. (2001). Steady streaming. Annual Review of Fluid Mechanics, 33, 43–65.

    Article  Google Scholar 

  • Simon, R. D. (1974). The use of an ultrasonic bath to disrupt cells suspended in volumes of less than 100 micro liters. Analytical Biochemistry, 60(1), 51–58.

    Article  CAS  Google Scholar 

  • Strasberg, M. (1959). Onset of ultrasonic cavitation in tap water. Journal of the Acoustical Society of America, 31(2), 163–176.

    Article  Google Scholar 

  • Supeno, X., and Kruus, P. (2000). Sonochemical formation of nitrate and nitrite in water. Ultrasonics Sonochemistry, 7(3), 109–113.

    Article  CAS  Google Scholar 

  • Suslick, K. E. (1988a). Ultrasound. Weinheim, VCH.

    Google Scholar 

  • Suslick, K. S. (1988b). Ultrasound: Its Chemical Physical and Biological Effects. New York, NY, VCH.

    Google Scholar 

  • Suslick, K. S., Fang, M., and Hyeon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118(47), 11960–11961.

    Article  CAS  Google Scholar 

  • Suslick, K. S., and Grinstaff, M. W. (1990). Protein microencapsulation of nonaqueous liquids. Journal of the American Chemical Society, 112(21), 7807–7809.

    Article  CAS  Google Scholar 

  • Tho, P., Manasseh, R., and Ooi, A. (2007). Cavitation microstreaming patterns in single and multiple bubble systems. Journal of Fluid Mechanics, 576, 191–233.

    Article  Google Scholar 

  • Toublan, F. J.-J., Boppart, S., and Suslick, K. S. (2006). Tumor targeting by surface-modified protein microspheres. Journal of the American Chemical Society, 128(11), 3472–3473.

    Article  CAS  Google Scholar 

  • Webb, A. G., Wong, M., Kolbeck, K. J., Magin, R., and Suslick, K. S. (1996). Sonochemically produced fluorocarbon microspheres: A new class of magnetic resonance imaging agent. Journal of Magnetic Resoning Imaging, 6(4), 675–683.

    Article  CAS  Google Scholar 

  • Yasui, K. (2002). Influence of ultrasonic frequency on multibubble sonoluminescence. Journal of the Acoustic Society of America, 112(4), 1405–1413.

    Article  CAS  Google Scholar 

  • Young, F. R. (1989). Cavitation. London, McGraw-Hill.

    Google Scholar 

  • Young, F. R. (2005). Sonoluminescence. Boca Raton, FL, CRC Press.

    Google Scholar 

  • Zhang, X. H., Quinn, A., and Ducker, W. A. (2008). Nanobubbles at the interface between water and a hydrophobic solid. Langmuir, 24(9), 4756–4764.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Kentish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kentish, S., Ashokkumar, M. (2011). The Physical and Chemical Effects of Ultrasound. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_1

Download citation

Publish with us

Policies and ethics