Skip to main content

The Exosome and Heterochromatin

Multilevel Regulation of Gene Silencing

  • Chapter
RNA Exosome

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 702))

Abstract

Heterochromatic silencing is important for repressing gene expression, protecting cells against viral invasion, maintaining DNA integrity and for proper chromosome segregation. Recently, it has become apparent that expression of eukaryotic genomesis far more complex than had previously been anticipated. Strikingly, it has emerged that most of the genome is transcribed including intergenic regions and heterochromatin, calling for us to re-address the question of how gene silencing is regulated and re-evaluate the concept ofheterochromatic regions of the genome being transcriptionally inactive. Although heterochromatic silencing can be regulated at the transcriptional level, RNA degrading activities supplied either by the exosome complex or RNAi also significantly contribute to this process. The exosome also regulates noncoding RNAs (ncRNAs) involved in the establishment of heterochromatin, further underscoring its role as the major cellular machinery involved in RNA processing and turn-over. This multilevel control of the transcriptome may be utilized to ensure greater accuracy of gene expression and allow distinction between functional transcripts and background noise. In this chapter, we will discuss the regulation of gene silencing across species, with special emphasis on the exosome’s contribution to the process. We will also discuss the links between transcriptional and posttranscriptional mechanisms for gene silencing and their impact on the regulation of eukaryotic transcriptomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birney E, Stamatoyannopoulos JA, Dutta A et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447(7146):799–816.

    Article  PubMed  CAS  Google Scholar 

  2. Chekanova JA, Gregory BD, Reverdatto SV et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 2007; 131(7): 1340–1353.

    Article  PubMed  CAS  Google Scholar 

  3. Wilhelm BT, Marguerat S, Watt S et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 2008; 453(7199): 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  4. Kammler S, Lykke-Andersen S, Jensen TH. The RNA exosome component hRrp6 is a target for 5-fluorouracil in human cells. Mol Cancer Res 2008; 6(6):990–995.

    Article  PubMed  CAS  Google Scholar 

  5. Preker P, Nielsen J, Kammler S et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 2008; 322(5909):1851–1854.

    Article  PubMed  CAS  Google Scholar 

  6. Guo X, Ma J, Sun J et al. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA 2007; 104(1): 151–156.

    Article  PubMed  CAS  Google Scholar 

  7. Glaunsinger BA, Ganem DE. Messenger RNA turnover and its regulation in herpesviral infection. Adv Virus Res 2006; 66:337–394.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson HE, Wardle J, Korkut SV et al. The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. Mol Cell Biol 2009; 29(18):5158–5167.

    Article  PubMed  CAS  Google Scholar 

  9. Villa T, Rougemaille M, Libri D. Nuclear quality control of RNA polymerase II ribonucleoproteins in yeast: tilting the balance to shape the transcriptome. Biochim Biophys Acta 2008; 1779(9):524–531.

    PubMed  CAS  Google Scholar 

  10. Vasiljeva L, Kim M, Terzi N et al. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol Cell 2008; 29(3):313–323.

    Article  PubMed  CAS  Google Scholar 

  11. Houseley J, Kotovic K, El Hage A et al. Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO 2007; 26(24):4996–5006.

    Article  CAS  Google Scholar 

  12. Buhler M, Haas W, Gygi SP et al. RNAi-dependent and-independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 2007; 129(4):707–721.

    Article  PubMed  CAS  Google Scholar 

  13. Neil H, Malabat C, d’Aubenton-Carafa Y et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009; 457(7232): 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  14. Xu Z, Wei W, Gagneur J et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 2009; 457(7232): 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  15. Davis CA, Ares M Jr. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2006; 103(9):3262–3267.

    Article  PubMed  CAS  Google Scholar 

  16. Kiss DL, Andrulis ED. Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3 and core exosome subunits. RNA.

    Google Scholar 

  17. Bernard P, Drogat J, Dheur S et al. Splicing factor spf30 assists exosome-mediated gene silencing in fission yeast. Mol Cell Biol 30(5): 1145–1157.

    Google Scholar 

  18. Wang SW, Stevenson AL, Kearsey SE et al. Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol Cell Biol 2008; 28(2):656–665.

    Article  PubMed  CAS  Google Scholar 

  19. Murakami H, Goto DB, Toda T et al. Ribonuclease activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function. PLoS ONE 2007; 2:e317.

    Article  PubMed  CAS  Google Scholar 

  20. Nicolas E, Yamada T, Cam HP et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 2007; 14(5):372–380.

    Article  PubMed  CAS  Google Scholar 

  21. Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet 2007; 8(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  22. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science 2003; 301(5634):798–802.

    Article  PubMed  CAS  Google Scholar 

  23. Gao L, Gross DS. Using genomics and proteomics to investigate mechanisms of transcriptional silencing in Saccharomyces cerevisiae. Brief Funct Genomic Proteomic 2006; 5(4):280–288.

    Article  PubMed  CAS  Google Scholar 

  24. Sekinger EA, Gross DS. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 2001; 105(3):403–414.

    Article  PubMed  CAS  Google Scholar 

  25. Steinmetz EJ, Warren CL, Kuehner JN et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 2006; 24(5):735–746.

    Article  PubMed  CAS  Google Scholar 

  26. Dellino GI, Schwartz YB, Farkas G et al. Polycomb silencing blocks transcription initiation. Mol Cell 2004; 13(6):887–893.

    Article  PubMed  CAS  Google Scholar 

  27. Schwartz YB, Kahn TG, Dellino GI et al. Polycomb silencing mechanisms in Drosophila. Cold Spring Harb Symp Quant Biol 2004; 69:301–308.

    Article  PubMed  CAS  Google Scholar 

  28. Core LJ, Lis JT. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 2008; 319(5871): 1791–1792.

    Article  PubMed  CAS  Google Scholar 

  29. Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008; 322(5909): 1845–1848.

    Article  PubMed  CAS  Google Scholar 

  30. Gudipati RK, Villa T, Boulay J et al. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat Struct Mol Biol 2008; 15(8):786–794.

    Article  PubMed  CAS  Google Scholar 

  31. Vasiljeva L, Kim M, Mutschler H et al. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 2008; 15(8):795–804.

    Article  PubMed  CAS  Google Scholar 

  32. Arigo JT, Carroll KL, Ames JM et al. Regulation of yeast NRD1 expression by premature transcription termination. Mol Cell 2006; 21(5):641–651.

    Article  PubMed  CAS  Google Scholar 

  33. Vasiljeva L, Buratowski S. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Molecular cell 2006; 21(2):239–248.

    Article  PubMed  CAS  Google Scholar 

  34. LaCava J, Houseley J, Saveanu C et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121(5):713–724.

    Article  PubMed  CAS  Google Scholar 

  35. Vanacova S, Wolf J, Martin G et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 2005; 3(6):e 189.

    Article  CAS  Google Scholar 

  36. Buhler M, Verdel A, Moazed D. Tethering RITS to a nascent transcript initiates RNAi-and heterochromatin-dependent gene silencing. Cell 2006; 125(5):873–886.

    Article  PubMed  CAS  Google Scholar 

  37. Zofall M, Fischer T, Zhang K et al. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 2009; 461(7262):419–422.

    Article  PubMed  CAS  Google Scholar 

  38. Bayne EH, Portoso M, Kagansky A et al. Splicing factors facilitate RNAi-directed silencing in fission yeast. Science 2008; 322(5901):602–606.

    Article  PubMed  CAS  Google Scholar 

  39. Bayne EH, White SA, Kagansky A et al. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140(5):666–677.

    Google Scholar 

  40. Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 2006; 50(2):81–99.

    Article  PubMed  CAS  Google Scholar 

  41. Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell 2009; 136(4):656–668.

    Article  PubMed  CAS  Google Scholar 

  42. He Y, Vogelstein B, Velculescu VE, et al. The antisense transcriptomes of human cells. Science 2008; 322(5909):1855–1857.

    Article  PubMed  CAS  Google Scholar 

  43. Carninci P, Kasukawa T, Katayama S et al. The transcriptional landscape of the mammalian genome. Science 2005; 309(5740):1559–1563.

    Article  PubMed  CAS  Google Scholar 

  44. Katayama S, Tomaru Y, Kasukawa T et al. Antisense transcription in the mammalian transcriptome. Science 2005; 309(5740): 1564–1566.

    Article  PubMed  Google Scholar 

  45. David L, Huber W, Granovskaia M et al. A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci USA 2006; 103(14):5320–5325.

    Article  PubMed  CAS  Google Scholar 

  46. Drinnenberg IA, Weinberg DE, Xie KT et al. RNAi in budding yeast. Science 2009; 326(5952):544–550.

    Article  PubMed  CAS  Google Scholar 

  47. Kim JM, Vanguri S, Boeke JD et al. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 1998; 8(5):464–478.

    PubMed  CAS  Google Scholar 

  48. Matsuda E, Garfinkel DJ. Posttranslational interference of Ty1 retrotransposition by antisense RNAs. Proc Natl Acad Sci USA 2009; 106(37): 15657–15662.

    Article  PubMed  CAS  Google Scholar 

  49. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822):860–921.

    Article  PubMed  CAS  Google Scholar 

  50. Alvarado V, Scholthof HB. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol 2009; 20(9): 1032–1040.

    Article  PubMed  CAS  Google Scholar 

  51. Obbard DJ, Gordon KH, Buck AH et al. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009; 364(1513):99–115.

    Article  PubMed  CAS  Google Scholar 

  52. Lopez-Fraga M, Martinez T, Jimenez A. RNA interference technologies and therapeutics: from basic research to products. BioDrugs 2009; 23(5):305–332.

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki K, Kelleher AD. Transcriptional regulation by promoter targeted RNAs. Curr Top Med Chem 2009; 9(12): 1079–1087.

    Article  PubMed  CAS  Google Scholar 

  54. Han J, Kim D, Morris KV. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci USA 2007; 104(30): 12422–12427.

    Article  PubMed  CAS  Google Scholar 

  55. Wierzbicki AT, Ream TS, Haag JR et al. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 2009; 41(5):630–634.

    Article  PubMed  CAS  Google Scholar 

  56. Li LC, Okino ST, Zhao H et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 2006; 103(46): 17337–17342.

    Article  PubMed  CAS  Google Scholar 

  57. Orban TI, Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex and the exosome. RNA 2005; 11(4):459–469.

    Article  PubMed  CAS  Google Scholar 

  58. Ibrahim F, Rohr J, Jeong WJ et al. Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 2006; 314(5807):1893.

    Article  PubMed  CAS  Google Scholar 

  59. Andrulis ED, Werner J, Nazarian A et al. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 2002; 420(6917):837–841.

    Article  PubMed  CAS  Google Scholar 

  60. Arigo JT, Eyler DE, Carroll KL et al. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 2006; 23(6):841–851.

    Article  PubMed  CAS  Google Scholar 

  61. Thiebaut M, Kisseleva-Romanova E, Rougemaille M et al. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 2006; 23(6):853–864.

    Article  PubMed  CAS  Google Scholar 

  62. Kim M, Vasiljeva L, Rando OJ et al. Distinct pathways for snoRNA and mRNA termination. Mol Cell 2006; 24(5):723–734.

    Article  PubMed  CAS  Google Scholar 

  63. Steinmetz EJ, Conrad NK, Brow DA et al. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 2001; 413(6853):327–331.

    Article  PubMed  CAS  Google Scholar 

  64. Hirota K, Miyoshi T, Kugou K et al. Stepwise chromatin remodelling by a cascade of transcription initiation of noncoding RNAs. Nature 2008; 456(7218): 130–134.

    Article  PubMed  CAS  Google Scholar 

  65. Uhler JP, Hertel C, Svejstrup JQ. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci USA 2007; 104(19):8011–8016.

    Article  PubMed  CAS  Google Scholar 

  66. Martens JA, Wu PY, Winston F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 2005; 19(22):2695–2704.

    Article  PubMed  CAS  Google Scholar 

  67. Bumgarner SL, Dowell RD, Grisafi P et al. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci USA 2009; 106(43): 18321–18326.

    Article  PubMed  CAS  Google Scholar 

  68. Wierzbicki AT, Haag JR, Pikaard CS. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 2008; 135(4):635–648.

    Article  PubMed  CAS  Google Scholar 

  69. Collins SR, Miller KM, Maas NL et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 2007; 446(7137):806–810.

    Article  PubMed  CAS  Google Scholar 

  70. Costanzo M, Baryshnikova A, Bellay J et al. The genetic landscape of a cell. Science 327(5964):425–431.

    Google Scholar 

  71. Wilmes GM, Bergkessel M, Bandyopadhyay S et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 2008; 32(5):735–746.

    Article  PubMed  CAS  Google Scholar 

  72. Bryk M, Briggs SD, Strahl BD et al. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol 2002; 12(2): 165–170.

    Article  PubMed  CAS  Google Scholar 

  73. Briggs SD, Bryk M, Strahl BD et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 2001; 15(24):3286–3295.

    Article  PubMed  CAS  Google Scholar 

  74. Pinskaya M, Morillon A. Histone H3 lysine 4 di-methylation: a novel mark for transcriptional fidelity? Epigenetics 2009; 4(5):302–306.

    Article  PubMed  CAS  Google Scholar 

  75. Dehe PM, Geli V. The multiple faces of Setl. Biochem Cell Biol 2006; 84(4):536–548.

    Article  PubMed  CAS  Google Scholar 

  76. Shilatifard A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 2008; 20(3):341–348.

    Article  PubMed  CAS  Google Scholar 

  77. Sims RJ 3rd, Millhouse S, Chen CF et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and premRNA splicing. Mol Cell 2007; 28(4):665–676.

    Article  PubMed  CAS  Google Scholar 

  78. Yamada T, Fischle W, Sugiyama T et al. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 2005; 20(2): 173–185.

    Article  PubMed  CAS  Google Scholar 

  79. Greenall A, Williams ES, Martin KA et al. Hip3 interacts with the HIRA proteins Hipl and Slm9 and is required for transcriptional silencing and accurate chromosome segregation. J Biol Chem 2006; 281(13):8732–8739.

    Article  PubMed  CAS  Google Scholar 

  80. Hou H, Wang Y, Kallgren SP et al. Histone variant H2A.Z regulates centromere silencing and chromosome segregation in fission yeast. J Biol Chem 285(3):1909–1918.

    Google Scholar 

  81. Mehta M, Kim HS, Keogh MC. Sometimes one just isn’t enough: do vertebrates contain an H2A.Z hyper-variant? J Biol 9(1):3.

    Google Scholar 

  82. Svotelis A, Gevry N, Gaudreau L. Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 2009; 87(1): 179–188.

    Article  PubMed  CAS  Google Scholar 

  83. Raisner RM, Hartley PD, Meneghini MD et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 2005; 123(2):233–248.

    Article  PubMed  CAS  Google Scholar 

  84. Pan X, Ye P, Yuan DS et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 2006; 124(5):1069–1081.

    Article  PubMed  CAS  Google Scholar 

  85. Reis CC, Campbell JL. Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae. Genetics 2007; 175(3):993–1010.

    Article  PubMed  CAS  Google Scholar 

  86. Lemay JF, D’Amours A, Lemieux C et al. The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 37(1):34–45.

    Google Scholar 

  87. Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007; 14(2): 103–105.

    Article  PubMed  CAS  Google Scholar 

  88. Azzalin CM, Reichenbach P, Khoriauli L et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318(5851):798–801.

    Article  PubMed  CAS  Google Scholar 

  89. Luke B, Panza A, Redon S et al. The Rat1p 5′to 3′exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 2008; 32(4):465–477.

    Article  PubMed  CAS  Google Scholar 

  90. Schoeftner S, Blasco MA. Chromatin regulation and noncoding RNAs at mammalian telomeres. Semin Cell Dev Biol 2009.

    Google Scholar 

  91. Schoeftner S, Blasco MA. A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs. Embo J 2009; 28(16):2323–2336.

    Article  PubMed  CAS  Google Scholar 

  92. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2008; 10(2):228–236.

    Article  PubMed  CAS  Google Scholar 

  93. Deng Z, Norseen J, Wiedmer A et al. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 2009; 35(4):403–413.

    Article  PubMed  CAS  Google Scholar 

  94. Garcia-Cao M, O’Sullivan R, Peters AH et al. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 2004; 36(1):94–99.

    Article  PubMed  CAS  Google Scholar 

  95. Singer MS, Gottschling DE. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 1994; 266(5184):404–409.

    Article  PubMed  CAS  Google Scholar 

  96. Singer MS, Kahana A, Wolf AJ et al. Identification of high-copy disrupters of telomeric silencing in Saccharomyces cerevisiae. Genetics 1998; 150(2):613–632.

    PubMed  CAS  Google Scholar 

  97. Azzalin CM, Lingner J. The double life of UPF1 in RNA and DNA stability pathways. Cell Cycle 2006; 5(14):1496–1498.

    Article  PubMed  CAS  Google Scholar 

  98. Azzalin CM, Lingner J. The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr Biol 2006; 16(4):433–439.

    Article  PubMed  CAS  Google Scholar 

  99. Redon S, Reichenbach P, Lingner J. Protein RNA and protein protein interactions mediate association of human EST1A/SMG6 with telomerase. Nucleic Acids Res 2007; 35(20):7011–7022.

    Article  PubMed  CAS  Google Scholar 

  100. Berretta J, Morillon A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep 2009; 10(9):973–982.

    Article  PubMed  CAS  Google Scholar 

  101. San Paolo S, Vanacova S, Schenk L et al. Distinct roles of noncanonical poly(A) polymerases in RNA metabolism. PLoS Genet 2009; 5(7):e1000555.

    Article  CAS  Google Scholar 

  102. Chapon C, Cech TR, Zaug AJ. Polyadenylation of telomerase RNA in budding yeast. RNA 1997; 3(11):1337–1351.

    PubMed  CAS  Google Scholar 

  103. Askree SH, Yehuda T, Smolikov S et al. A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA 2004; 101(23):8658–8663.

    Article  PubMed  CAS  Google Scholar 

  104. Berretta J, Pinskaya M, Morillon A. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 2008; 22(5):615–626.

    Article  PubMed  CAS  Google Scholar 

  105. Camblong J, Beyrouthy N, Guffanti E et al. Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev 2009; 23(13):1534–1545.

    Article  PubMed  CAS  Google Scholar 

  106. Camblong J, Iglesias N, Fickentscher C et al. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 2007; 131(4):706–717.

    Article  PubMed  CAS  Google Scholar 

  107. Sun BK, Deaton AM, Lee JT. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 2006; 21(5):617–628.

    Article  PubMed  CAS  Google Scholar 

  108. Ng K, Pullirsch D, Leeb M et al. Xist and the order of silencing. EMBO Rep 2007; 8(1):34–39.

    Article  PubMed  CAS  Google Scholar 

  109. de Napoles M, Mermoud JE, Wakao R et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 2004; 7(5):663–676.

    Article  PubMed  Google Scholar 

  110. Marks H, Chow JC, Denissov S et al. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 2009; 19(8): 1361–1373.

    Article  PubMed  CAS  Google Scholar 

  111. Ciaudo C, Bourdet A, Cohen-Tannoudji M et al. Nuclear mRNA degradation pathway(s) are implicated in Xist regulation and X chromosome inactivation. PLoS Genet 2006; 2(6):e94.

    Article  PubMed  CAS  Google Scholar 

  112. Morey C, Arnaud D, Avner P et al. Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation. Hum Mol Genet 2001; 10(13): 1403–1411.

    Article  PubMed  CAS  Google Scholar 

  113. Ogawa Y, Sun BK, Lee JT. Intersection of the RNA interference and X-inactivation pathways. Science 2008;320(5881):1336–1341.

    Article  PubMed  CAS  Google Scholar 

  114. Nesterova TB, Popova BC, Cobb BS et al. Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a. Epigenetics Chromatin 2008; 1(1):2.

    Article  PubMed  CAS  Google Scholar 

  115. Ilik I, Akhtar A. roX RNAs: noncoding regulators of the male X chromosome in flies. RNA Biol 2009; 6(2):113–121.

    Article  PubMed  CAS  Google Scholar 

  116. Mendjan S, Taipale M, Kind J et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 2006; 21(6):811–823.

    Article  PubMed  CAS  Google Scholar 

  117. Iida T, Kawaguchi R, Nakayama J. Conserved ribonuclease, Eri1, negatively regulates heterochromatin assembly in fission yeast. Curr Biol 2006; 16(14): 1459–1464.

    Article  PubMed  CAS  Google Scholar 

  118. Ibrahim F, Rymarquis LA, Kim EJ et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci USA.

    Google Scholar 

  119. van Wolfswinkel JC, Claycomb JM, Batista PJ et al. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 2009; 139(1): 135–148.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Coy, S., Vasiljeva, L. (2010). The Exosome and Heterochromatin. In: Jensen, T.H. (eds) RNA Exosome. Advances in Experimental Medicine and Biology, vol 702. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7841-7_9

Download citation

Publish with us

Policies and ethics