Skip to main content

Pesticide Interactions with Soil Microflora: Importance in Bioremediation

  • Chapter
  • First Online:
Microbes and Microbial Technology

Abstract

Modern application of insecticides belonging to different chemical families to boost agricultural productivity has led to their accumulation in soils to levels that affect, directly and indirectly, soil enzyme activities and physiol-ogical characteristics of nontarget soil microflora including plant growth-promoting rhizobacteria, and, consequently the performance of crop plants. Various biological strategies can be applied for removing toxic substances, including insecticides, from the environment and are collectively known as bioremediation. Among biological approaches, the use of microbes with degradative ability is considered the most efficient and cost-effective option to clean pesticide-contaminated sites. The present review focuses on the role of naturally occurring rhizosphere microbes involved in degradation or transformation of insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamil, M., Zaidi, A., and Khan, M. S. 2005. Biotoxic effects of organophosphorus insecticides on agronomically important microbial communities in soil. Poll. Res. 24:487–491.

    CAS  Google Scholar 

  • Ahemad, M., and Khan, M. S. 2009. Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J. Crop Sci. Biotechnol. 12:213–222.

    Article  Google Scholar 

  • Ahemad, M., and Khan, M. S. 2010. Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot. 29:325–329.

    Article  CAS  Google Scholar 

  • Ahlborg, U., and Thunberg, T. M. 1980. Chlorinated phenols: Occurrence, toxicity, metabolism and environmental impact. CRC Critical Rev. Toxicol. 7: 1–35.

    Article  CAS  Google Scholar 

  • Ajaz, M., Jabeen, N., Ali, T. A., and Rasool, S. A. 2009. Split role of plasmid genes in the degradation of chlorpyrifos by indigenously isolated Pseudomonas Putida Mas-1. Pak. J. Bot. 41: 2055–2060.

    Google Scholar 

  • Anupama, K. S., and Paul, S. 2010. Ex situ and in situ biodegradation of lindane by Azotobacter chroococcum. J. Environ. Sci. Health, Part B, 45: 58–66.

    Article  CAS  Google Scholar 

  • Anwar, S., Liaquat, F., Khan, Q. M., Khalid, Z. M., and Iqbal, S. 2009. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J. Hazard. Mater. 168:400–405.

    Article  CAS  Google Scholar 

  • Atterby, H., Smith, N., Chaudhry, Q., and Stead, D. 2002. Exploiting microbes and plants to clean up pesticide contaminated environments. Pestic. Outlook 13:9–13.

    Article  Google Scholar 

  • Bachmann, A., Walet, P., Wijnen, P., Debruin, W., Huntjens, J. L. M., Roelofsen, W., and Zehnder, A. J. B. 1988. Biodegradation of α-hexachlorocyclohexane and β-hexachlorocyclohexane in a soil slurry under different redox conditions. Appl. Environ. Microbiol. 54:143–149.

    CAS  Google Scholar 

  • Bhadbhade, B. J. 2001. Microbial degradation of an organophosphorus pesticide-Monocrotophos. Ph. D. Thesis, University of Pune, India.

    Google Scholar 

  • Bhadbhade, B. J., Dhakephalkar, P. K., Sarnaik, S. S., and Kanekar, P. P. 2002a. Plasmid-associated biodegradation of an organophosphorus pesticide, Monocrotophos, by Pseudomonas mendocina. Biotechnol Lett. 24:647–650.

    Article  CAS  Google Scholar 

  • Bhadbhade, B. J., Sarnaik, S. S., and Kanekar, P. P. 2002b. Biomineralization of an organophosphorus pesticide, Monocrotophos, by soil bacteria. J. Appl. Microbiol. 93:224–234.

    Article  CAS  Google Scholar 

  • Bhalerao, T. S., and Puranik, P. R. 2009. Microbial degradation of monocrotophos by Aspergillus oryzae. International Biodeterior. Bioderadation. 63:503–508.

    Article  CAS  Google Scholar 

  • Böltner, D., Godoy, P., Muñoz-Rojas, J., Duque, E., Moreno-Morillas, S., Sánchez, L., and Ramos, J. L. 2007. Rhizoremediation of lindane by root-colonizing Sphingomonas. Microbial. Biotechnol. 1: 87–93.

    Google Scholar 

  • Boyle, A. W., Häggbloma, M. M., and Younga, L. Y. 1999. Dehalogenation of lindane (γ-hexachlorocyclohexane) by anaerobic bacteria from marine sediments and by sulfatereducing bacteria. FEMS Microbiol. Ecol. 29:379–387.

    CAS  Google Scholar 

  • Buser, H. R., and Muller, M. D. 1995. Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environ. Sci. Technol. 29:664–672.

    Article  CAS  Google Scholar 

  • Cáceres, T., Megharaj, M., Venkateswarlu, K., Sethunathan, N., and Naidu, R. 2010. Fenamiphos and related organophosphorus pesticides: environmental fate and toxicology. Rev. Environ. Contam. Toxicol. 205:117–162.

    Article  Google Scholar 

  • Cho, K., Math, R. K., Islam, S. M. A., Lim, W. J., Hong, S. Y., Kim, J. M., Yun, M. G., Cho, J. J., and Yun, H. D.2009. Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J. Agric. Food Chem. 57: 1882–1889.

    Article  CAS  Google Scholar 

  • Das, A. C., Chakravarty, A., Sen, G., Sukul, P., and Mukherjee, D. 2005. A comparative study on the dissipation and microbial metabolism of organophosphate and carbamate insecticides in orchaqualf and fluvaquent soils of West Bengal. Chemosphere 58:579–584.

    Article  CAS  Google Scholar 

  • Das, A. C., Chakravarty, A., Sukul, P., and Mukherjee, D. 2003a. Influence and persistence of phorate and carbofuran insecticides on microorganisms in rice field. Chemosphere 53:1033–1037.

    Article  CAS  Google Scholar 

  • Das, A. C., and Mukherjee, D. 2000. Influence of insecticides on microbial transformation of nitrogen and phosphorus in typic orchragualf soil. Agric. Food Chem. 48:3728–3732.

    Article  CAS  Google Scholar 

  • Dureja, P. 1989. Photodecomposition of monocrotophos in soil, on plant foliage, and in water. Bull. Environ. Contam. Toxicol. 43:239–245.

    Article  CAS  Google Scholar 

  • Evans, J., Dobrowolski, N., and Wallace, C. 1993. Storage of inoculated and omethoate-treated medic seed reduces effectiveness of rhizobial inoculant. Aust. J. Exp. Agric. 33:49–51.

    Article  CAS  Google Scholar 

  • Evans, J., Seidel, J., O’Connor, G. E., Watt, J., and Sutherland, M. 1991. Using omethoate insecticide and legume inoculant on seed. Aust. J. Exp. Agric. 31:71–76.

    Article  CAS  Google Scholar 

  • Fox, J. E., Gulledge, J., Engelhaupt, E., Burow, M. E., and McLachlan, J. A. 2007. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc. Natl Acad. Sci. USA 104:10282–10287.

    Article  CAS  Google Scholar 

  • Ghanem, I., Orfi, M., and Shamma, M. 2007. Biodegradation of chlorpyrofos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus. Folia Microbiol. 52: 423–423

    Article  CAS  Google Scholar 

  • Glover-Amengor, M., and Tetteh, F. M. 2008. Effect of pesticide application rate on yield of vegetables and soil microbial communities. West African J. Appl. Ecol. 12, ISSN: 0855–4307.

    Google Scholar 

  • Guha, A., Kumari, B., Bora, T. C., and Roy, M. K. 1997. Possible involvement of plasmids in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiol. 42:574–576.

    Article  CAS  Google Scholar 

  • Gundi, V. A. K. B., and Reddy, B. R. 2006. Degradation of monocrotophos in soils. Chemosphere 62:396–403.

    Article  CAS  Google Scholar 

  • Gundi, V. A. K. B., Narasimha, G., and Reddy, B. R. 2005. Interaction effects of insecticides on microbial populations and dehydrogenase activity in a black clay soil. J. Environ. Sci. Health 40: 269–283.

    Google Scholar 

  • Haider, H., and Jagnow, G. 1975. Degradation of 14  C, 3  H and 36 Cl-labelled γ-hexachlorocyclohexane by anaerobic soil microorganisms. Arch. Microbiol. 104:113–121

    Article  CAS  Google Scholar 

  • HCN (Health Council of the Netherlands). 1996. Committee on the evaluation of the carcinogenicity of chemical substances Evaluation of the carcinogenicity of chemical substances. Health Council of the Netherlands, Rijswijk (The Netherlands), publication no. 1996/26.

    Google Scholar 

  • Huang, X., Lee, L. S., and Nakatsu, C. 2000. Impact of animal waste lagoon effluents on chlorpyrifos degradation in soils. Environ. Toxicol. Chem. 19:2864–2870.

    Article  CAS  Google Scholar 

  • Hussain, S., Siddique, T., Arshad, M., and Saleem, M. 2009. Bioremediation and phytoremediation of pesticides: recent advances. Crit. Rev. Environ. Sci. Technol. 39:843–907.

    Article  CAS  Google Scholar 

  • Imai, R., Nagata, Y., Senoo, K., Wada, H., Fukuda, M., Takagi, M., and Yano, K. 1989. Dehydrochlorination of gamma-hexachlorocyclohexane (gamma-BHC) by γ-BHC assimilating Pseudomonas paucimobilis. Agr. Biol. Chem. Tokyo 53:2015–2017.

    CAS  Google Scholar 

  • Jia, K. Z., Li, X. H., He, J., Gu, L. F., Ma, J. P., Li, S. P. 2007. Isolation of a monocrotophos-degrading bacterial strain and characterization of enzymatic degradation. Huan Jing Ke Xue. 28:908–912.

    CAS  Google Scholar 

  • Johri, A., Dua, K. M., Tuteja, D., Saxena, R., Saxena, D. M., and Lal, R. 1998. Degradation of α-, β-, γ- and σ-hexachlorocyclohexanes by Sphingomonas paucimobilis. Biotechnol. Lett. 20:885–887.

    Article  CAS  Google Scholar 

  • Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., and Wani, P. A., 2010. Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch. Agron. Soil Sci. 56:73–98.

    Article  CAS  Google Scholar 

  • Krishna, K. R., and Philip, L. 2008. Biodegradation of lindane, methyl parathion and carbofuran by various enriched bacterial isolates. J. Environ. Sci. Health B. 43:157–171.

    Article  CAS  Google Scholar 

  • Kuritz, T., and Wolk, P. 1995. Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl. Environ. Microbiol. 61:234–238.

    CAS  Google Scholar 

  • Lakshmi, C. V., Kumar, M., and Khanna, S. 2009. Biodegradation of chlorpyrifos in soil by enriched cultures. Curr. Microbiol. 58:35–38.

    Article  Google Scholar 

  • Li, X., He, J., and Li, S. 2007. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res. Microbiol. 158: 143–149.

    Article  CAS  Google Scholar 

  • MacRae, I. C., Raghu, K., and Bautista, E. M. 1969. Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature 221:859–860.

    Article  CAS  Google Scholar 

  • Madhuri, R. J., and Rangaswamy, V. 2009. Biodegradation of selected insecticides by Bacillus and Pseudomonas sps in ground nut fields. Toxicol. Int. 16:127–132.

    Google Scholar 

  • Mallick, K., Bharati, K., Banerji, A., Shakil, N. A., and Sethunathan, N. 1999. Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bull. Environ. Contam. Toxicol. 62:48–54.

    Article  CAS  Google Scholar 

  • Martikainen, E., Haimi, J., and Ahtiainen, J. 1998. Effects of dimethoate and benomyl on soil organisms and soil processes: a microcosm study. Appl. Soil Ecol. 9:381–387.

    Article  Google Scholar 

  • Megharaj, M., Kantachote, D., Singleton, I., and Naidu, R. 2000. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformations of DDT. Environ. Pollut. 109:35–42.

    Article  CAS  Google Scholar 

  • Middeldorp, P. J. M., Jaspers, M., Zehnder, A. J. B., and Schraa, G. 1996. Biotransformation of alpha-, beta-, gamma- and delta-hexachlorocyclohexane under methanogenic conditions. Environ. Sci. Technol. 30:2345–2349.

    Article  CAS  Google Scholar 

  • Mishra, D., Bhuyan S., Adhya, T. K., and Sethunathan, N. 1992. Accelerated degradation of methyl parathion, parathion and fenitrothion by suspensions from methyl parathion and p-nitrophenol treated soils. Soil Biol. Biochem. 24:1035–1042.

    Article  Google Scholar 

  • Moreno, A. I., and Buitron, G. 2004. Influence of the origin of the inoculum on the anaerobic biodegradability tests. Water Sci. Technol. 30:2345–2349.

    Google Scholar 

  • Mukherjee, I., Gopal, M., and Mathur, D. S. 2007. Behavior of b-cyfluthrin after foliar application on chickpea (Cicer aretinium L.) and pigeon pea (Cajanus cajan L.). Bull. Environ. Contam. Toxicol. 78:85–89.

    Article  CAS  Google Scholar 

  • Nagasawa, S., Kikuchi, R., Nagata, Y., Takagi, M., and Matsuo, M. 1993. Aerobic mineralization of γ-HCH by Pseudomonas paucimobilis UT26. Chemosphere 26:1719–1728.

    Article  CAS  Google Scholar 

  • Nagata, Y., Kamakura, M., Endo, R., Miyazaki, R., Ohtsubo, Y. and Tsuda, M. 2006. Distribution of γ-hexachlorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26. FEMS Microbiol. Lett. 256:112–118.

    Article  CAS  Google Scholar 

  • Nagata, Y., Ryo, E., Michihiro, I., Yoshiyuki, O., Masataka, T. 2007. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl. Microbiol. Biotechnol. 76:741–752.

    Article  CAS  Google Scholar 

  • Nagpal, V., Srinivasan, M. C., and Paknikar, K. M. 2008. Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus conidiobolus 03-1-56 isolated from litter. Ind. J. Microbiol. 48:134–141.

    Article  CAS  Google Scholar 

  • Nazarian, A., and Mousawi, M. 2005. Study of bacterial resistance to organophosphorous pesticides in iran. Iranian J. Environ. Health Sci. Eng. 2:207–211.

    CAS  Google Scholar 

  • Pal, R., Chakrabarti, K., Chakraborty, A., and Chowdhury, A. 2006. Effect of pencycuron on microbial parameters of waterlogged soil. J. Environ. Sci. Health B 41:1319–1331.

    CAS  Google Scholar 

  • Panda, S., and Sahu, S. K. 1999. Effects of malathion on the growth and reproduction of Drawida willsi (Oligochaete) under laboratory conditions. Soil Biol. Biochem. 31:363–366.

    Article  CAS  Google Scholar 

  • Panda, S., and Sahu, S. K. 2004. Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaete) following application of three pesticides to soil. Chemosphere 55:283–290.

    Article  CAS  Google Scholar 

  • Pandey, S., and Singh, D. K. 2004. Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soils. Chemosphere 55:197–205.

    Article  CAS  Google Scholar 

  • Pesce, S. F., and Wunderlin, D. A. 2004. Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. Int. Biodeterior. Biodegradation 54: 255–260.

    Article  CAS  Google Scholar 

  • Quintero, J. C., Moreira, M. T., Feijoo, G., and Lema, J. M. 2005. Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere 61:528–536.

    Article  CAS  Google Scholar 

  • Rangaswamy, V., and Venkateswarlu, K. 1992. Degradation of selected insecticides by bacteria isolated from soil. Bull. Environ. Contam. Toxicol. 49:797–804.

    Article  CAS  Google Scholar 

  • Richinis, R., Kanaeva, I., Mulchandani, A., and Chen, W. 1997. Biodegradation of organophosphorus pesticides using surface expressed organo-phosphorus hydrolase. Nature Biotechnol. 15: 984–987.

    Article  Google Scholar 

  • Rigas, F., Dritsa, V., Marchant, R., Papadopoulou, K., Avramides, E. J., and Hatzianestis, I. 2005. Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ. Int. 31:191–196

    Article  CAS  Google Scholar 

  • Rodríguez, R. A., and Toranzos, G. A. 2003. Stability of bacterial populations in tropical soil upon exposure to Lindane. Int. Microbiol. 6:253–258.

    Article  Google Scholar 

  • Sahu, S. K., Patnaik, K. K., Bhuyan, S., and Sethunathan, N. 1993. Degradation of soil applied isomers of hexachlorocyclohexane by a Pseudomonas sp. Soil Biol. Biochem. 25:387–391.

    Article  CAS  Google Scholar 

  • Salvador, R; Casal, B., Yates, M., Martı´n-Luengo, M. A., and Ruiz-Hitzky, E. 2002. Microwave decomposition of a chlorinated pesticide (lindane) supported on modified sepiolite. Appl. Clay Sci. 22:103–113.

    Article  CAS  Google Scholar 

  • Sasikumar, C. S., and Papinazath, T. 2003. Environmental Management:- Bioremediation Of Polluted Environment. In Martin J. Bunch, V. Madha Suresh and T. Vasantha Kumaran, eds., Proceedings of the Third International Conference on Environment and Health, Chennai, India, Chennai: Department of Geography, University of Madras and Faculty of Environmental Studies, York University. 15–17 December, pp. 465–469.

    Google Scholar 

  • Senoo, K., and Wada, H. 1989. Isolation and identification of an aerobic γ-HCH decomposing bacterium from soil. Soil Plant Nutr. 35:79–87.

    CAS  Google Scholar 

  • Sethunathan, N., and Yoshida, T. 1973. A Flavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol. 19:873–875.

    Article  CAS  Google Scholar 

  • Singh, J., and Singh, D. K. 2006. Ammonium, nitrate and nitrite nitrogen and nitrate reductase enzyme activity in groundnut (Arachis hypogaea L.) fields after diazinon, imidacloprid and lindane treatments. J. Environ. Sci. Health Part B 41:1305–1318.

    Article  CAS  Google Scholar 

  • Singh, B. K., and Kuhad, R. C. 2000. Degradation of insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordid. Pest Manag. Sci. 56: 142–146.

    Article  CAS  Google Scholar 

  • Singh, B. K., Walker, A., Morgan, J. A. W., and Wright, D. J. 2004. Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl. Environ. Microbiol. 70:4855–4863.

    Article  CAS  Google Scholar 

  • Singh, B. K., Walker, A., Morgan, J. A. W., and Wright, D. J. 2003. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl. Environ. Microbiol. 69:5198–5206.

    Article  CAS  Google Scholar 

  • Srinivas, T., Sridevi, M., and Mallaiah, K. V. 2008. Effect of pesticides on Rhizobium and nodulation of green gram Vigna Radita (L.) Wilczek. ICFAI J. Life Sci. 2:36–44.

    Google Scholar 

  • Subhas, S., and Singh, D. K. 2003. Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11. Can. J. Microbiol. 49:101–109.

    Article  Google Scholar 

  • Thomas, J. C., Berger, F., Jacquier, M., Bernillon, D., Baud-Grasset, F., Truffaut, N., Normand, P., Vogel, T.M., and Simonet, P. 1996. Isolation and characterization of a novel γ-hexachlorocyclohexane-degrading bacterium. J. Bacteriol. 178:6049–6055.

    CAS  Google Scholar 

  • Vasileva, V., and Ilieva, A. 2007. Effect of presowing treatment of seeds with insecticides on nodulating ability, nitrate reductase activity and plastid pigments content of lucerne (Medicago sativa L.). Agron. Res. 5:87–92.

    Google Scholar 

  • Wang, L., Zhang, L., Chen, H., Tian, Q., and Zhu, G. 2005. Isolation of a triazophos-degrading strain Klebsiella sp. E6 effectively utilizing triazophos as a sole nitrogen source. FEMS Microbiol. Lett. 53:259–265.

    Article  Google Scholar 

  • Wani, P. A., Zaidi, A., Khan, A. A., and Khan, M. S. 2005. Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials of rhizospheric microorganisms. Ann. Pl. Protec. Sci. 13:139–144.

    Google Scholar 

  • Wauchope, R. D., Buttler, T. M., Hornsby, A. G., Augustijn-Beckers, P. W., and Burt, J. P. 1992. SCS/ARS/CES Pesticide properties database for environmental decision making. Rev. Environ. Contam. Toxicol. 123:1–155.

    CAS  Google Scholar 

  • Yang, C., Liu, N., Guo, X., and Qiao, C. 2006. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol. Lett. 265:118–125.

    Article  CAS  Google Scholar 

  • Yang, L., Zhao, Y. H., Zhang, B. X., Yang, C. H., and Zhang, X. 2005. Isolation and characterization of a chlorpyrifos and 3, 5, 6- trichloro-2-pyridinol degrading bacterium. FEMS Microbiol. Lett. 251:67–73.

    Article  CAS  Google Scholar 

  • Zahran, H. H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63:968–989.

    CAS  Google Scholar 

  • Zaidi, A., Khan M. S., Ahemad, M.,.and Oves, M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 56:263–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahemad, M., Khan, M.S. (2011). Pesticide Interactions with Soil Microflora: Importance in Bioremediation. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_15

Download citation

Publish with us

Policies and ethics