Skip to main content

The High Road to Astronomical Photometric Precision: Differential Photometry

  • Chapter
  • First Online:
Astronomical Photometry

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 373))

Abstract

Differential photometry offers the most precise method for measuring the brightness of astronomical objects. We attempt to demonstrate why this should be the case, and then describe how well it has been done through a review of the application of differential techniques from the earliest visual methods to photoelectric and CCD photometry. We pay special attention to the work of Theodore Walraven and his legacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arago, F. (1858). Oeuvres, 10, 261

    Google Scholar 

  • Baum, W. A., Hiltner, W. A., Johnson, H. L., & Sandage, A. R. (1959). Astrophysical Journal, 130, 749

    Article  ADS  Google Scholar 

  • Bernacca, P. L., Canton, G., Stagni, R., et al. (1978). Astronomy and Astrophysics, 70, 821

    ADS  Google Scholar 

  • Bond, G. P. (1861). Monthly Notices of the Royal Astronomical Society, 21, 197

    ADS  Google Scholar 

  • Bouguer, P. (1729). Essai d’Optique sur la Gradation de la Lumière, Paris

    Google Scholar 

  • Chia, T. T., Milone, E. F., & Robb, R. M. (1977) Astrophysics and Space Science, 48, 3

    Article  ADS  Google Scholar 

  • Code, A. D., & Liller W. C. (1962). “Direct Recording of Stellar Spectra,” in W. A. Hiltner (ed.) Astronomical Techniques, Vol. II of Stars and Stellar Systems series, (Chicago: University of Chicago Press), p. 281

    Google Scholar 

  • Crawford, D. L. (1958). Astrophysical Journal, 128, 185

    Article  ADS  Google Scholar 

  • Davidson, J. K., Neff, J. S., & Enemark, D. C. (1976). Publications of the Astronomical Society of the Pacific, 88, 209

    Article  ADS  Google Scholar 

  • De Biase, G. A., & Sedmak, G. (1974). Astronomy and Astrophysics, 33, 1

    ADS  Google Scholar 

  • De Biase, G. A., Paterno, L., Pucillo, M., & Sedmak, G. (1978). Applied Optics, 17, 435

    Article  ADS  Google Scholar 

  • Dugan, R. S. (1911). Princeton Contributions, 1

    Google Scholar 

  • Geyer, E. H., & Hoffmann, M. (1975). Astronomy and Astrophysics, 38, 359

    ADS  Google Scholar 

  • Grauer, A. D., & Bond, H. E. (1981). Publications of the Astronomical Society of the Pacific, 93, 388

    Article  ADS  Google Scholar 

  • Hardie, R. H. (1962). “Photoelectric Reductions,” in W. A. Hiltner (ed.) Astronomical Techniques, Vol. II of Stars and Stellar Systems series, (Chicago: University of Chicago Press), p. 178

    Google Scholar 

  • Hermann, D. B. (2002). J. C. F. Zöllner: Grundzüge einer allgemeinen (Photometrie des Himmels). Ostwalds Klassiker der exacten Naturwissenschaften, Vol. 291. (Frankfurt am Main: Harri Deutsch)

    Google Scholar 

  • Johnson, H. L. (1962). “Photoelectric Photometers and Amplifiers,” in W. A. Hiltner (ed.) Astronomical Techniques, Vol. II of Stars and Stellar Systems series, (Chicago: University of Chicago Press), p. 157

    Google Scholar 

  • Jordan, F. C. (1923). Astronomical Journal, 35, 44

    Article  ADS  Google Scholar 

  • Kallrath, J., & Linnell, A. P. (1987). Astrophysical Journal, 313, 346

    Article  ADS  Google Scholar 

  • Kallrath, J., & Milone, E. F. (2009). Eclipsing Binary Stars: Modeling and Analysis (2nd ed.). (New York: Springer)

    Google Scholar 

  • Kinman, T. D., & Mahaffey, C. T. (1974). Publications of the Astronomical Society of the Pacific, 86, 336

    Article  ADS  Google Scholar 

  • Kwee, K. K., & Van Woerden, H. (1956). Bulletin of the Astronomical Institutes of the Netherlands, 12, 327

    ADS  Google Scholar 

  • Landolt, A. U. (1973). Astronomical Journal, 78, 959

    Article  ADS  Google Scholar 

  • Landolt, A. U. (1983). Astronomical Journal, 88, 439

    Article  ADS  Google Scholar 

  • Ledoux, P., & Walraven, Th. (1956). Handbuch der Physik, 51, 353

    ADS  Google Scholar 

  • McCord, T. B. (1968). Applied Optics, 7, 475

    Article  ADS  Google Scholar 

  • Milone, E. F. (1967). Photoelectric Photometry of Some Selected Variables. Ph.D. Dissertation. (New Haven: Yale University)

    Google Scholar 

  • Milone, E. F. (1993). In K. C. Leung, & I.-S. Nha (eds.) New Frontiers in Binary Star Research, ASP Conference Series, Vol. 38, p. 443

    Google Scholar 

  • Milone, E. F., & Robb, R. M. (1983). Publications of the Astronomical Society of the Pacific, 95, 666

    Article  ADS  Google Scholar 

  • Milone, E. F., Groisman, G., Fry, D. J. I., & Bradstreet, D. H. (1991). Astronomical Journal, 370, 677

    ADS  Google Scholar 

  • Milone, E. F., Leahy, D. A., & Fry, D. J. I. (1986). Publications of the Astronomical Society of the Pacific, 98, 1179

    Article  ADS  Google Scholar 

  • Milone, E. F., Robb, R. M., Babott, F. M., & Hansen, C. H. (1982). Applied Optics, 21, 2992

    Article  ADS  Google Scholar 

  • Milone, E. F., Wilson, W. J. F., Fry, D. J. I., & Schiller, S. J. (1994). Publications of the Astronomical Society of the Pacific, 106, 1120

    Article  ADS  Google Scholar 

  • Milone, E. F., Chia, T. T., Castle, K. G., Robb, R. M., & Merrill, J. E. (1980). Astrophysical Journal, Supplement, 43, 339

    Google Scholar 

  • Myrabø, H. K. (1979). Astrophysics and Space Science, 60, 367

    Article  ADS  Google Scholar 

  • Myrabø, H. K. (1980). Astronomy and Astrophysics, 84, 297

    ADS  Google Scholar 

  • Nather, R. E. (1973). Vistas in Astronomy, 15, 91

    Article  ADS  Google Scholar 

  • Nelson, R. H., Milone, E. F., Van Leeuwen, J., Terrell, D., Penfold, J.E., & Kallrath, J. (1995). Astronomical Journal, 110, 2400

    Article  ADS  Google Scholar 

  • Pel, J. W. (1991). “A Comparison of the Systematic Accuracy in Four Photometric Systems,” in A. G. Davis Philip, A. R. Upgren, & K. A. Janes (eds.) Precision Photometry: Astrophysics of the Galaxy, (Schenectady: L. Davis Press), p. 165

    Google Scholar 

  • Pel, J. W., & Lub, J. (2007). “The Walraven VBLUW Photometric System: 32 Years of 5-Channel Photometry,” in C. Sterken (ed.) The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ASP Conference Series, Vol. 364, p. 63

    Google Scholar 

  • Piccioni, A., Bartolini, C., Guarnieri, A., & Giovanelli, F. (1979). Astronomy and Astrophysics, 29, 463

    Google Scholar 

  • Pickering, E. C. (1879). Harvard Annals, 11, Part 1

    Google Scholar 

  • Plaut, L. (1940). Bulletin of the Astronomical Institutes of the Netherlands, 9, 121

    ADS  Google Scholar 

  • Robb, R. M., & Milone, E. F. (1982). Information Bulletin on Variable stars, No. 2182, 1

    Google Scholar 

  • Rousseau, C., Bourassa, J. I., & Milone, E. F. (1988). Information Bulletin on Variable stars, No. 3211, 1

    Google Scholar 

  • Russell, H. N. (1939). Bulletin of the American Astronomical Society, 9, 88

    Google Scholar 

  • Schiller, S. J. (1986). Eclipsing Binary Stars in Open Clusters: Observations and Analyses of HD 27130 and DS Andromedae, Ph.D. Thesis, U. Calgary

    Google Scholar 

  • Schiller, S. J., & Milone, E. F. (1988). Astronomical Journal, 95, 1466

    Article  ADS  Google Scholar 

  • Sedmak, G. (1973). Astronomy and Astrophysics, 25, 41

    ADS  Google Scholar 

  • Steinheil, K. A. (1837). Abhandlungen der mathematische-physikalische Klasse der Bayerische Akademie der Wissenschaften, 2, 3

    Google Scholar 

  • Strömgren, B. (1963). “Quantitative Classification Methods,” in K. Aa. Strand (ed.) Basic Astronomical Data, Stars and Stellar Systems series, Vol. III, (Chicago: University of Chicago Press), p. 123

    Google Scholar 

  • Strömgren, B. (1966). Annual Reviews of Astronomy and Astrophysics, 4, 433

    Article  ADS  Google Scholar 

  • Visvanathan, N. (1972). Publications of the Astronomical Society of the Pacific, 84, 248

    Article  ADS  Google Scholar 

  • Volk, V. A., & Milone, E. F. (2000). Delta Scuti Star Newsletter, 14, 19

    ADS  Google Scholar 

  • Walraven, T. (1949). Bulletin of the Astronomical Institutes of the Netherlands, 11, 17

    ADS  Google Scholar 

  • Walraven, T. (1952). Bulletin of the Astronomical Institutes of the Netherlands, 11, 421

    ADS  Google Scholar 

  • Walraven, T. (1952). Monthly Notices of the Astronomical Society of South Africa, 11, 4

    Google Scholar 

  • Walraven, T. (1953). “On the Use of Servomechanisms in the Photometry of Stars,” in F. B. Wood (ed.) Astronomical Photoelectric Photometry, (Washington DC: Publications of the American Association for the Advancement of Science), p. 114

    Google Scholar 

  • Walraven, T. (1955). Bulletin of the Astronomical Institutes of the Netherlands, 12, 223

    ADS  Google Scholar 

  • Walraven, T., & Walraven, J. (1960). Bulletin of the Astronomical Institutes of the Netherlands, 15, 67

    ADS  Google Scholar 

  • Walraven, T., Walraven, J., & Balona, L. A. (1992). Monthly Notices of the Royal Astronomical Society, 254, 59

    ADS  Google Scholar 

  • Wesselink, A. J. (1941). Leiden Annalen, 17(3)

    Google Scholar 

  • Wendell, O. C. (1909). Harvard Annals, 49, Part 1

    Google Scholar 

  • Wilson, R. E., & Devinney, E. J. (1971). Astrophysical Journal, 166, 605

    Article  ADS  Google Scholar 

  • Wilson, W. J. F., Milone, E. F., & Fry, D. J. I. (1993). Publications of the Astronomical Society of the Pacific, 105, 809

    Article  ADS  Google Scholar 

  • Wilson, W. J. F., Milone, E. F., Fry, D. J. I., & van Leeuwen, J. (1998). Publications of the Astronomical Society of the Pacific, 110, 433

    Article  ADS  Google Scholar 

  • Wood, H. J., & Lockwood, G. W. (1967). Publications of the Leander McCormick Observatory, 15, Part 5

    Google Scholar 

  • Young, A. T. (1988). “Improvements to Photometry I. Better Estimation of Derivatives in Extinction and Transformation Equations,” in W. J. Borucki (eds.) Second Workshop on Improvements to Photometry, (Moffett Field, CA: NASA Ames Research Center), NASA CP-10015

    Google Scholar 

  • Young, A. T., Genet, R. M., Boyd, L. J., et al. (1991) Publications of the Astronomical Society of the Pacific, 103, 221

    Article  ADS  Google Scholar 

  • Zöllner, J. K. F. (1861). Grundzüge einer allgemeinen Photometrie des Himmels. (Berlin: Mitscher & Röstel)

    Google Scholar 

Download references

Acknowledgements

It is a pleasure for EFM to acknowledge the encouragement of Dr. A. J. Wesselink in developing the RADS, and who, with Adrian A. Disko, who had worked at Leiden in the 1950s and was employed at Yale Observatory beginning in the 1960s, provided information about the Walraven experiments. University of Calgary Professor Alan Clark provided a great deal of advice in getting the RADS program started, and additional ideas came from Professor René Racine of the Université de Montréal. Charles H. Hanson of the University of Calgary EPR Group helped realize the system. It is important to acknowledge that for nearly a quarter of a century, the management of the RADS hardware and support of its use was in the capable hands of RAO Technician Fred M. Babott of the University of Calgary Physics and Astronomy Department. Not only did he rebuild and maintain parts of instrument when needed, he often took an active role in helping students to learn its operation and the software to reduce their data. This was indeed true for all of the instruments in active use at the RAO over this interval. The Rapid Alternate Detection System was developed with the help of grants to EFM from the National Research Council of Canada, and research with it was supported later also by the Canadian Natural Sciences and Engineering Research Council. Finally we thank Andrew T. Young for critiquing an earlier version of this paper. This paper is No. 77 in the Publications of the RAO reprint series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Milone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milone, E.F., Pel, J.W. (2011). The High Road to Astronomical Photometric Precision: Differential Photometry. In: Milone, E., Sterken, C. (eds) Astronomical Photometry. Astrophysics and Space Science Library, vol 373. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8050-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8050-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8049-6

  • Online ISBN: 978-1-4419-8050-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics